Type Analysis Reference

Uwe Kastens
W. M. Waite

University of Paderborn
D-33098 Paderborn
Germany

Manual

This manual is for the type analysis module library
Copyright (©) 1999, 2008 University of Paderborn
Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all
copies.

Table of Contents

1 Types, Operators, and Indications............. 1
1.1 Language-defined types........c.ccoviiiiiiiiiiiiiiii., 1
1.2 Language-defined operators..............ccoiiiiiiiinennnininnn. 1
1.3 Language-defined indications............... ... i i 2
1.4 Language-defined coercibility i 2
1.5 Reducing specification size.........o 3

2 Typed Entities................................... 7
2.1 Establishing the type of an entity 7
2.2 Accessing the type of anentity............. 8
2.3 Passing ancillary information oL 8

3 Expressions.............. 11
3.1 Type analysis of expression trees.................ooiiiiiiiinn. 12
3.2 Selecting an operator at an expression node.................... 13
3.3 Expression contexts without operators......................... 15
3.4 Operators with explicit operands 17
3.5 Operators with operand lists............ ..., 18
3.6 TYPe CONVEISION . ..ttt 20

4 User-Defined Types............................ 23
4.1 Type denotations.oouiuiiiiiiiiiiiii i 24
4.2 Typeidentifiers. ... 24
4.3 Referring to a typeoov i 25
4.4 Operator, function, and method definitions 26
4.5 Reducing specification size............c.. i i 29

5 Structural Type Equivalence.................. 31
5.1 Partitioning the set of types.......o i 31
5.2 Computing equivalence classes.............cooiiiiiiiiiia... 31
5.3 Functions as typed entities. ..., 32

6 Error Reporting in Type Analysis............ 35
6.1 Verifying typed identifier usage it 35
6.2 Verifying type identifier usageo i 35
6.3 Verifying type consistency within an expression................ 35

6.4 Support for context checking............. 37

ii

7 Dependence in Type Analysis................. 39
7.1 Dependences among types and type identifiers 40
7.2 Dependence on structural equivalence.......................... 42
7.3 Dependence on the operator database.......................... 42
7.4 Dependences for typed entities............. il 42

8 Program-Dependent Property Computation .. 45

Index. ... 47
Symbol Toles 47
Rule computations. 47
Attributes . . 48

General conceptsooou i 48

1 Types, Operators, and Indications

A type characterizes a subset of values in the universe manipulated by the program, an
operator defines an operation applied to operands of specified types to produce a result of
a specific type, and an indication defines a set of operators. These three concepts form the
basis for any type model. The designer must specify language-defined types, operators, and
indications; it may also be possible for the user to provide additional specifications as part
of a program (see Chapter 4 [User-Defined Types|, page 23).

Although language-defined types may be specified individually, they are usually intro-
duced by language-defined operator specifications. These, along with language-defined indi-
cation specifications, are described in a language called OIL (see Section “OIL’s Specification
Language” in Oil Reference Manual). OIL text is written in a file whose name has the form
‘name’.o0il.

1.1 Language-defined types

Each type is represented by a unique definition table key whose IsType property has the
value 1. Further properties of that key may be used to provide information about that
particular type. NoKey represents an unknown or non-existent type.

Language-defined types like “integer” are represented by known keys (see Section “Ini-
tializations” in Definition Table). The known key name can be used directly in an attribute
computation. For example, suppose that the designer chose intType as the name of the
known key for the Java integer type. The following rule would then interpret the keyword
int as denoting that type:

RULE: Type ::= ’int’ COMPUTE
Type.Type=intType;
END;

Language-defined types are sometimes denoted by pre-defined identifiers (as in Pascal)
instead of keywords. This approach increases the complexity of the specification by intro-
ducing type identifiers (see Section 4.2 [Type identifiers], page 24). It also allows a user to
re-define the names of language-defined types as names of variables or parameters, making
programs very hard to understand. We recommend that designers use keywords to denote
language-defined types.

1.2 Language-defined operators

An operator has a fixed signature, and is represented by a unique definition table key.
Properties of that key may be used to provide information about that particular operator.
NoKey represents an unknown or non-existent operator.

The OIL statement OPER ‘opr’ ‘sig’; defines the key and signature of an operator:

opr The name of the known definition table key representing the operator. Multiple
operator definitions with the same value of ‘opr’ are not allowed.

sig The signature of the operator represented by ‘opr’. It consists of a parenthesized
(possibly empty), comma-separated list of operand types followed by a colon
and a return type. All of the types in the signature are automatically defined
as known keys representing types; no further specification is required.

2 Type Analysis

Only one occurrence of the keyword OPER is required for a sequence of contiguous operator
definitions:

OPER
iAddOp (intType,intType) :intType;
fAddOp (floatType,floatType) :floatType;
iGtrOp (intType,intType) :boolType;
The known keys named intType, floatType, and boolType are defined by this specification,
each with its IsType property set to 1. Known keys named iAddOp, £AddOp, and iGtrOp
are also defined; no further specification of these names is necessary.

Often there are a number of language-defined operators sharing the same signature. A
shorthand notation for describing such a situation allows the designer to provide a comma-
separated list of operator names and write the shared signature only once:

OPER
iAddOp, iSub0Op, iMulOp,iDivOp (intType,intType) :intType;
fAddOp, fSub0p,fMulOp,fDiv0p (floatType,floatType):floatType;

1.3 Language-defined indications

Each operator must belong to a set of operators associated with some indication, also
represented by a unique definition table key. Properties of that key may be used to provide
additional information about that indication. NoKey represents an unknown or non-existent
indication.

The OIL statement INDICATION ‘ind’: ‘list’; defines a subset of the operators asso-
ciated with an indication:

‘ind’ The known definition table key representing the indication. Multiple indication
definitions with the same value of ‘ind’ are allowed. In that case, the opera-
tor set associated with the indication is the union of the sets specified by the
individual definitions.

‘list’ A comma-separated list of operators in the indication’s set.

Only one occurrence of the keyword INDICATION is required for a sequence of contiguous
indication definitions:
INDICATION

PlusInd: iAddOp, fAddOp;
MinusInd: iSubOp, £SubOp;

1.4 Language-defined coercibility

Language properties like the “usual arithmetic conversions” of C and the “widening conver-
sions” of Java allow the compiler to accept an operand of one type as though it were a value
of another type. We use the relation acceptableAs on types to model these properties.
acceptableAs is a partial order:

Reflexive (‘T’ acceptableAs ‘T’) for any type ‘T’

Transitive (‘T’ acceptableAs ‘T1’) and (‘T1’ acceptableAs ‘T2’) for some types ‘T’, ‘T1’,
and ‘T2’ implies (‘T’ acceptableAs ‘T2’)

Chapter 1: Types, Operators, and Indications 3

Antisymmetric
(‘T" acceptableAs ‘T1’) and (‘T1’ acceptableAs ‘T’) implies ‘T’ is identical to
(T17

To see why these properties are important, consider the following expression in C or Java
(s is of type short and f is of type float):

s + f

Both C and Java allow implicit conversion of short to int and int to float in the
context of an arithmetic operand. Thus a designer would specify (short acceptableAs
int) and (int acceptableAs float) for C or Java. Transitivity guarantees that (short
acceptableAs float), and reflexivity guarantees that (float acceptableAs float), so the
operator £Add0p can be selected from the set associated with the indication PlusInd of the
last section.

Suppose that (float acceptableAs int). In that case, the meaning of the expression
is ambiguous. There is no way to decide whether to select the operator iAddOp or the
operator £Add0p from PlusInd’s set. But because acceptableAs is antisymmetric, (float
acceptableAs int) would imply that int and float were identical types. Thus the designer
cannot specify (float acceptableAs int) for C or Java.

The acceptableAs relation is specified by defining coercion operators. The OIL state-
ment COERCION ‘opr’ ‘sig’; defines the key and signature of a coercion:

‘opr’ The name of the known definition table key representing the coercion operator.

If ‘opr’ is omitted, the OIL compiler will generate a unique name internally.
Multiple coercion definitions with the same value of ‘opr’ are not allowed. A
coercion definition cannot have the same value of ‘opr’ as an operator definition.

‘sig The signature of the coercion operator represented by ‘opr’. It consists of a
parenthesized operand type followed by a colon and a return type. Both types
in the signature are automatically defined as known keys representing types; no
further specification is required.

Only one occurrence of the keyword COERCION is required for a sequence of contiguous
coercion operator definitions:

COERCION
sToi (shortType):intType;
(intType) :floatType;

This specification illustrates both named and anonymous coercions. Generally speaking,
coercions need be named only if they are to be discussed in associated documentation or
extracted to support further processing (such as the evaluation of constant expressions).

1.5 Reducing specification size

A full specification of language-defined operators often leads to a combinatorial explosion. In
many applications the effects of this explosion on the written specification can be mitigated
by avoiding unnecessary operator names. For example, the task of type analysis is to verify
type correctness; the identity of the operator that models the type behavior at a specific
node is normally irrelevant.

4 Type Analysis

Language definitions avoid combinatorial explosions by giving names to sets of types
and then defining properties of operations in terms of these sets rather than the individual
elements. For example, the C definition describes operations on “arithmetic types” rather
than describing those operations on integers and then again on floating-point values. OIL
provides a notation for naming and manipulating sets of types that allows the designer to
encode such language definitions directly.

The OIL statement SET ‘name’ = ‘expr’ ; defines a set of types:
‘name’ An identifier naming a set. Multiple sets with the same name are not allowed.

‘expr’ An expression defining the types that are members of the set. There are five
possible expression formats:

[‘elements’]
Each member of the comma-separated list ‘elements’ is a known
key representing a type. That type is an element of the value of
this expression. There are no other elements.

‘name’ The previously-defined set ‘name’ is the value of this expression.
‘s1’ + ‘s2’
The value of this expression is the union of set ‘s1’ and set ‘s2’.
‘sl * ‘g2’
The value of this expression is the intersection of set ‘s1’ and set
‘g2,
‘s1’ - ‘82’
The value of this expression is the set of elements of ‘s1’ that are
not elements of ‘s2’.
Here are some definitions that mirror the C language standard:

SET Signed_IntegerType =
[signed_charType, shortType, intType, longTypel;

SET Unsigned_IntegerType =
[unsigned_charType, unsigned_shortType,
unsigned_intType, unsigned_longTypel;

SET FloatingType =
[floatType, doubleType, long_doubleType];

SET IntegralType =
[charType] + Signed_IntegerType + Unsigned_IntegerType;

SET ArithmeticType = IntegralType + FloatingType;

SET ScalarType = ArithmeticType + [VoidPointerType];
A specific context in a program will often require a value that can be of any type in a
particular set. For example, the condition value in a C if statement or conditional expres-
sion can be of any scalar type. We model this situation by defining a “type” (scalarType,

Chapter 1: Types, Operators, and Indications 5

say) and making each scalar type acceptable as that type. The context can then require a
value of scalarType, and any scalar type will be acceptable.

When a type set name is used in an OPER or COERCION signature, the result is a number
of distinct operators. Each operator’s signature is constructed by consistently substituting
one element of the named type set for each instance of the type name. Thus every scalar
type can be made acceptable as scalarType as follows:

COERCION (ScalarType):scalarType;

Similarly, signatures containing type set names can be used to reduce the number of
specifications needed for operators. For example, consider the following specification:

OPER ArithOp (ArithmeticType, ArithmeticType): ArithmeticType;

It defines a set of 12 operators, each named by the known key ArithOp. Each operator
has a distinct signature, one of which is (charType, charType) : charType. That signature
results from the consistent substitution of the charType element of ArithmeticType for the
name of that set in the OPER statement’s signature.

This set of 12 operators can be associated with an indication:
INDICATION ArithInd: ArithOp;

Because the same element of a type set is substituted for each instance of the name of
that set in a signature, the only way to get all combinations of elements is to create another
name for that set and use both names in the signature. For example, a value of any scalar
type in C can be cast to any other scalar type:

SET CastResult = ScalarType;
OPER ScalarCast (ScalarType):CastResult;

One of the operators named by the known key ScalarCast has the signature
(charType) :floatType. That signature results from substituting the charType element
of ScalarType for the name of that set and the floatType element of CastResult for the
name of that set.

2 Typed Entities

A typed entity is a named program component, one of whose properties is a type. Variables,
formal parameters, and fields are the most common typed entities; functions are also typed
entities in some languages (see Section 5.3 [Functions as typed entities|, page 32). When
an identifier is used to represent a typed entity, the type specified by a defining occurrence
of that identifier must be made available at each applied occurrence. This is accomplished
through the use of a DefTableKey-valued property of the definition table key characterizing
the typed entity.

The Typing module exports computational roles to implement the definition and use of
typed entities:

TypedDefinition
The computational role inherited by a grammar symbol that represents a defi-
nition of one or more typed entities having the same type.

TypedDefId
The computational role inherited by a grammar symbol that represents a defin-
ing occurrence of an identifier for a typed entity.

TypedUseld
The computational role inherited by a grammar symbol that represents an
applied occurrence of an identifier for a typed entity.

The Typing module is instantiated by
$/Type/Typing.gnrc +referto=‘prefix’ :inst

‘prefix’Key (or simply Key if the referto parameter is missing) must be the name of an
attribute of every grammar symbol inheriting the TypedDefId or TypedUseId role. The
value of that attribute must be the definition table key bound to the symbol during name
analysis (see Section “Name analysis according to scope rules” in Specification Module
Library).

2.1 Establishing the type of an entity

A typical local variable declaration from Java or C specifies a type and a list of variable
names:

int a, b, c;

The entire declaration plays the role of a TypedDefinition; each of a, b, and ¢ plays the
role of a TypedDefId.

The value of the TypedDefinition.Type attribute must be set by a user computation
to the definition table key of the type. No other user computations are needed because
default computations provided by the Typing module in descendant TypedDefId constructs
will access the TypedDefinition.Type attribute, setting the appropriate property of the
definition table key characterizing the typed entity.

A Java or C compiler might use the following specification to describe a variable decla-
ration:

8 Type Analysis

SYMBOL VrblDecl INHERITS TypedDefinition END;

SYMBOL VarIdDef INHERITS TypedDefId END;

RULE: VrblDecl ::= Type VarIdDefs ’;’ COMPUTE
VrblDecl.Type=Type.Type;

END;

RULE: VarIdDefs LISTOF VarIdDef END;

2.2 Accessing the type of an entity

TypedUseld is an applied occurrence of an identifier representing a typed entity. A Typing
module computation sets the value of the TypedUseId. Type attribute to the definition table
key representing the entity’s type.

If ExpIdUse represented an applied occurrence of a variable or parameter identifier in
the abstract syntax tree, the Typing module will provide a value for ExpIdUse.Type if the
following line appears in the specification:

SYMBOL ExpIdUse INHERITS TypedUseld END;

2.3 Passing ancillary information

The Typing module guarantees that every TypedUseId.Type attribute depends on all of
the type analysis computations (see Section 7.4 [Dependences for typed entities], page 42).
In other words, any computation accessing TypedUseId.Type is guaranteed to take place
after all type analysis computations have been completed. This dependence can be used to
guarantee the availability of information characterizing the typed entity that is ancillary to
type analysis.

The operation that sets the Type property of the definition table key characterizing the
typed entity depends on the void attribute TypedDefId.GotProp. TypedDefId.GotProp is
set by an accumulating computation that can be augmented by an upper-context accumulat-
ing computation of the symbol inheriting TypedDefId or by an accumulating computation
in a rule having the symbol inheriting TypedDefId on the right-hand side. The Typing mod-
ule will then guarantee that all such a computations have been carried out before any access
to TypedUseId.Type is allowed. Any such computations must, however, be independent of
all results of type analysis.

Pascal’s distinction between variable and value parameters is a typical example of infor-
mation ancillary to type analysis that must be conveyed from defining to applied occurrences
of typed entities:

Chapter 2: Typed Entities 9

ATTR IsVarParam: int;

SYMBOL FormalParamSect INHERITS TypedDefinition COMPUTE
SYNT.IsVarParam=0;

END;

RULE: FormalParamSect ::= ’var’ Formals ’:’ Type COMPUTE
FormalParamSect.IsVarParam=1;

END;

SYMBOL FormalIldDef INHERITS TypedIdDef COMPUTE
INH.GotProp+=
ResetIsVarParam(THIS.Key,INCLUDING FormalParamSect.IsVarParam);
END;

SYMBOL ExpIdUse INHERITS TypedUseld COMPUTE
SYNT.IsVarParam=GetIsVarParam(THIS.Key,0) <- THIS.Type;
END;

This computation assumes that an integer-valued property IsVarParam has been defined.
It is set by a computation in the upper context of FormalIdDef that augments the default
computation of the void attribute TypedIdDef .GotProp, and queried by a symbol computa-
tion in the lower context of ExpIdUse. The latter computation depends on ExpIdUse.Type,
so the Typing module guarantees that the property value has been set for every formal
parameter before it is queried.

FormalParamSect.IsVarParam is an integer valued attribute, distinct from
the IsVarParam property, set by a symbol computation in the lower context of
FormalParamSect. That symbol computation is overridden in the rule representing a
declaration of a variable parameter.

Note that a particular instance of symbol ExpIdUse in the tree does not necessarily
represent an applied occurrence of a formal parameter. (It might represent an applied
occurrence of a variable identifier, for example.) Thus the IsVarParam property might not
be set; the query will return the default value 0 in that case. The overall effect of these
computations is therefore to set the value of ExpIdUse.IsVarParam to 1 if and only if that
instance of ExpIdUse represents an applied occurrence of a variable parameter.

11

3 Expressions

An expression node represents a program construct that yields a value, and an expression
tree is a subtree of the abstract syntax tree made up entirely of expression nodes. Type
analysis within an expression tree is uniform; additional specifications are needed only at the
roots and leaves. (Note that these need not be roots and leaves in the sense of the abstract
syntax tree.) A designer often chooses to represent a programming language expression
by more than one expression tree, in order to capture special relationships within that
expression. For example, each argument of a function call might be a separate expression
tree because more type conversions are allowed in that context than in the context of an
operator.

The Expression module provides computational roles and rule computations to imple-
ment the type analysis of expression trees:

ExpressionSymbol
The computational role inherited by a grammar symbol that represents an
expression node.

OperatorSymbol
The computational role inherited by a grammar symbol that represents an
operator node.

OpndExprListRoot
BalanceListRoot
Computational roles inherited by grammar symbols that represent operand lists.

OpndExprListElem

BalancelListElem
Computational roles inherited by grammar symbols that represent
operand list elements. Every OpndExprListElem must be a descendant of
OpndExprListRoot in the tree; every BalanceListElem must be a descendant
of BalanceListRoot.

PrimaryContext
TransferContext
BalanceContext
MonadicContext
DyadicContext
ListContext
ConversionContext
CastContext
RootContext
Rule computations implementing common expression contexts.

Indication
OperName Rule computations for expression contexts where operations are performed, but
which have no grammar symbol representing the possible operations.
The expression module is usually instantiated by:

$/Type/Expression.gnrc :inst

12 Type Analysis

For a discussion of alternatives, see Section 3.2 [Selecting an operator at an expression
node|, page 13.

3.1 Type analysis of expression trees

The symbol on the left-hand side of a rule defining an expression node characterizes
the expression’s result. It inherits the ExpressionSymbol role. Two attributes of
ExpressionSymbol describe its type:

Required An inherited attribute whose DefTableKey value represents the type required
by the surrounding context. (A value of NoKey indicates that no specific type
is required.) Required may be set by a user computation at the root of an
expression subtree; computations are supplied by the Expression module for
all other expression nodes.

Type An attribute whose DefTableKey value is set by computations supplied by
the Expression module to represent the type of the result delivered by the
expression subtree rooted in this node. (A value of NoKey indicates that the
type delivered by the node is unknown.) Type may depend on Required as well
as on the possible types of the node’s children; it must never be set by user
computation.

An expression node is type-correct if the type specified by its Type attribute is acceptable
as the type specified by its Required attribute. Any type is acceptable as an undefined
required type, and an undefined type is acceptable as any required type.

In order to support incremental development, ExpressionSymbol defines default com-
putations setting the values of both Required and Type to NoKey; those computations are
overridden by the rule computations described in this chapter. The default computations
allow one to declare that a symbol inherits ExpressionSymbol without producing specifi-
cation errors for every context containing that symbol. This advantage is offset by the fact
that if one forgets to provide rule computations for some contexts, the generated compiler
will silently ignore certain errors in the input program.

Rules defining expression nodes in an abstract syntax tree for a typical programming
language describe constants, variables, and computations:

SYMBOL Expr INHERITS ExpressionSymbol END;

RULE: Expr = Number END;
RULE: Expr = ExpIdUse END;
RULE: Expr = Expr Operator Expr END;
RULE: Expr = Expr ’[’ Subscript ’]’ END;

The first two rules describe leaves of expression subtrees. Any node described by the first
rule is a leaf of the abstract syntax tree as well as a leaf of some expression subtree. Nodes
described by the second rule are not leaves of the abstract syntax tree because each has an
ExpIdUse node as a child.

A leaf of an expression subtree delivers a value whose type must be determined from
the context of that leaf according to the definition of the language. For example, the Expr
node in the first rule might deliver the language-defined integer type; in the second rule,
the delivered type is the value of ExpIdUse.Type.

Chapter 3: Expressions 13

The type analyzer models most interior expression nodes by operators applied to
operands:

1. An indication is derived from the context.

2. One operator is selected from the set associated with that indication.

3. The Type attribute of the node is set to the result type of the selected operator.
4

. The Required attributes of one or more children are set to the operand types of the
selected operator.

For example, in the following rule, the indication is provided by the Operator child:
RULE: Expr ::= Expr Operator Expr END;

Usually, a set of several operators (such as {iAddOp, £AddOp}) is associated with that
indication. An operator is then selected from that set as discussed in the next section.

In the fourth rule, we might assume that each array type definition adds a dyadic access
operator to an indication fixed by the rule (see Section 4.4 [Operator definitions|, page 26):

RULE: Expr ::= Expr ’[’ Subscript ’]’ END;

The left operand of that operator is the array type, the right operand is the index type,
and the result is the element type.

The operator/operand model provides support for expression node semantics that are
ubiquitous in programming languages. Several other models, useful in special circumstances,
are supported and will be introduced in later sections of this chapter. It is clear, however,
that there will be situations in which the semantics of an expression context do not fit any
of the supported models. Our advice is to consider such a context as a place where several
disjoint expression subtrees meet: The expression symbol on the left-hand side of the rule
defining the context is a leaf of an expression tree above the context, and each expression
symbol on the right-hand side is the root of an expression tree below the context.

3.2 Selecting an operator at an expression node

If an indication is associated with a singleton operator set, that operator is selected regard-
less of operand or result types.

There are two standard algorithms for selecting an operator if the indication’s set has
more than one element. The simplest ignores the type required by the context. For each
operator in the set, it checks whether each operand is acceptable as the type required by
that operator. If more than one operator in the set satisfies this condition, the algorithm
chooses the one requiring the fewest coercions. If no operator can be identified, then the
unknown operator is chosen.

To select this algorithm, instantiate the Expression module without the +referto pa-
rameter:
$/Type/Expression.gnrc :inst

Ada is a language in which the selection of an operator depends on the type required
by the context as well as the types delivered by the operands. In that case, a two-pass
algorithm is required.

Starting with the leaves of an expression tree and working towards the root of that tree,
the algorithm determines a possible type set for each expression node. Every type in the

14 Type Analysis

possible type set at a node is either a leaf type or is a type associated with an operator
whose result is that type, and whose operands are elements of the possible type sets of the
node’s children. The algorithm associates a cost with each type in a possible type set.

OIL allows one to specify an arbitrary integer cost for each operator and coercion inde-
pendently. If this specification is omitted, a cost of 1 is assigned to the operator or coercion.
For the remainder of this section, we assume that all cost specifications have been omitted
and therefore all costs are 1.

Consider a very simple expression node, the integer constant 3. One element of the
possible type set for this node is the language-defined integer type, which has cost 0 because
no operations are needed to create a value of that type. If a coercion has been defined with
the language-defined integer type as its operand and the language-defined floating-point
type as its result, then another element of the possible type set of this node is the language-
defined floating-point type. It has cost 1, the total number of operators required to produce
it. Similarly, if there is a coercion from floating-point to double, double will be an element
of the possible type set of the node and it will have cost 2.

When the algorithm computes the possible type set of an interior expression node, it
considers the operators in that node’s indication set. For each operator, it checks whether
the type required by that operator for a given argument is in the possible type set of the
corresponding operand. Each operator meeting that condition is a possible operator at the
node. The cost of using an operator is one more than the sum of the costs associated with
its argument types in the possible type sets of its operands. Finally, the possible type set of
the node is the set of all types T such that the result type of a possible operator is acceptable
as T.

Often a particular element of the possible type set of an interior node can be obtained
in more than one way. For example, consider a node representing the sum of two integers.
Assuming that the integer type is acceptable as the floating-point type, the possible type
set of each child contains both integer and floating-point types. Thus both integer addition
and floating-point addition are possible selections at this node. There are then two ways to
obtain a floating-point result:

1. Use an integer addition and convert the result to floating-point.

2. Convert each operand to floating-point and use a floating-point addition.

The cost of using an integer addition in this context is 1 because the cost of the integer
elements of the possible type sets are both 0. Converting the result to floating-point costs
one coercion, for a total cost of 2. The cost of using a floating-point addition, on the other
hand, is 3 because the cost of the floating-point elements of the possible type sets are both
1.

The cost of obtaining a value of type T using a particular operator is the sum of the cost
of using that operator and the number of coercion operators required to convert a value of
the result type to a value of type T. When more than one possible operator selection leads
to a value of a given type, the algorithm only retains the one with the lowest cost.

If the Required attribute of the expression tree root is the unknown type, then the
algorithm chooses the lowest-cost element of the root’s possible type set as the result type
of the expression. Otherwise, the Required attribute of the root is taken as the result type
regardless of whether it appears in the root’s possible type set.

Chapter 3: Expressions 15

The second pass starts with the root of the tree and works towards the leaves. At each
node, the value of the Required attribute specifies an element of the possible type set and
hence an operator. Given an operator, the values of the node’s Type attribute and the
Required attributes of any operands are fixed.

If the possible type set of an expression node does not contain an element equal to the
value of that node’s Required attribute, then the unknown operator is selected; the node’s
Type attribute and the Required attributes of any operands are set to the unknown type.

To select the two-pass algorithm, instantiate the Expression module with the
+referto=Result parameter:

$/Type/Expression.gnrc +referto=Result :inst

3.3 Expression contexts without operators

Let ‘e1’ be a grammar symbol playing the ExpressionSymbol role, and ‘type’ be an ex-
pression yielding the definition table key of a type. A primary context is one in which the
parent ‘el’ delivers a value of a known type. PrimaryContext(‘el’, ‘type’) provides the
rule computations to set ‘e1l’.Type to the type ‘type’. (Recall that the value of the Type
attribute of an expression node must never be set directly by a user computation.)

The constant and variable expressions in C are examples of primary contexts:

SYMBOL Expr INHERITS ExpressionSymbol END;

RULE: Expr ::= Number COMPUTE
PrimaryContext (Expr, intType) ;
END;

SYMBOL ExpIdUse INHERITS TypedUseld END;

RULE: Expr ::= ExpldUse COMPUTE
PrimaryContext (Expr,ExpIdUse.Type) ;
END;

The type of an integer constant is the language-defined integer type (see Section 1.1
[Language-defined types|, page 1), and the type of a variable is the type with which it was
declared (see Section 2.2 [Accessing the type of an entity], page 8).

Let ‘e1’” and ‘e2’ be grammar symbols playing the ExpressionSymbol role. A transfer
contert is one in which the parent ‘e1’ and one of its children ‘e2’ are identical with respect
to type. TransferContext(‘el’,‘e2’) provides the rule computations to set ‘el’.Type
and ‘e2’.Required.

The comma expression in C is an example of a transfer context:

RULE: Expr ::= Expr ’,’ Expr COMPUTE
TransferContext (Expr[1],Expr[3]);
END;

Notice that the left operand of the comma, Expr[2], is the root of an expression subtree
distinct from the one containing the TransferContext. The value of this expression will be
discarded, so its type is arbitrary. Thus there is no need to override the default computation
Expr[2] .Required=NoKey.

16 Type Analysis

Let ‘el’, ‘e2’, and ‘e3’ be grammar symbols playing the ExpressionSymbol role. A
balance context is one in which the parent ‘el’ must deliver either the result delivered by
child ‘e2’ or the result delivered by child ‘e3’. This means that values delivered by both
children must be acceptable as a common type, and the parent must deliver a value of that
common type. BalanceContext(‘el’,‘e2’, ‘e3’) provides the rule computations to set
‘el’.Type, ‘e2’.Required, and ‘e3’.Required such that the following relations hold:

e ‘e2’.Type acceptableAs ‘el’.Type
e ‘e3’.Type acceptableAs ‘el’.Type
e There is no type ‘t’ other than ‘el’. Type such that
‘e2’.Type acceptableAs ‘t’
‘e3’.Type acceptableAs ‘t’
— ‘t’ acceptablels ‘el’.Type
e ‘e2’.Required equals ‘el’.Type

e ‘e3’.Required equals ‘el’. Type

The conditional expression of C is an example of a balance context:

RULE: Expr ::= Expr ’7?’ Expr ’:’ Expr COMPUTE
BalanceContext (Expr [1] ,Expr[3],Expr[4]);
Expr[2] .Required=scalarType;

END;

The condition, Expr [2], is the root of an expression subtree distinct from that containing
the BalanceContext. The definition of C requires that Expr[2] return a value of scalar
type, independent of the types of the other expression nodes. (Pointers and numbers are
values of scalar type in C.) Thus the default computation Expr [2] .Required=NoKey must
be overridden in this context.

Some languages generalize the conditional expression to a case expression. For example,
consider an ALGOL 68 computation of the days in a month:

begin int days, month, year;

days := case month in
31,
(year mod 4 and year mod 100 <> 0 or year mod 400 = 0 | 28 | 29),
31,30,31,30,31,31,30,31,30,31 esac

end

The number of cases is not fixed, and the balancing process therefore involves an arbitrary
list. This is the purpose of the BalanceListRoot and BalanceListElem roles. Both inherit
from ExpressionSymbol, and neither requires computations beyond the ones used in any
expression context. The balancing computation described above is carried out pairwise on
the list elements:

Chapter 3: Expressions 17

SYMBOL CaseExps INHERITS BalancelListRoot END;
SYMBOL CaseExp INHERITS BalancelListElem END;

RULE: Expr ::= ’case’ Expr ’in’ CaseExps ’esac’ COMPUTE
TransferContext (Expr[1],CaseExps);
END;

RULE: CaseExps LISTOF CaseExp END;

RULE: CaseExp ::= Expr COMPUTE
TransferContext (CaseExp,Expr) ;
END;

Notice that these rule computations simply interface with the BalanceListRoot and
BalanceListElem roles; all significant computations are done by module code generated
from those roles.

3.4 Operators with explicit operands

Tree symbols in the abstract syntax that correspond to operator symbols in a source program
usually inherit the OperatorSymbol role. Two attributes of OperatorSymbol describe the
operator selection in the current context:

Indic A synthesized attribute whose DefTableKey value represents the indication
derived from the context. (A value of NoKey indicates that no such indication
can be derived.) Indic must be set by a user computation.

Oper An attribute whose DefTableKey value is set by Expression module computa-
tions to represent the operator selected from the set identified by the associated
indication. (A value of NoKey indicates that no operator could be selected.)
Oper may depend on Required as well as on the possible types of the node’s
children and the operator indication; it must never be set by user computation.

In order to support incremental development, OperatorSymbol defines a default com-
putation setting the values of both Indic and Oper to NoKey. The default computation
of Indic is overridden by a user computation, and that of Oper by the rule computations
described in this section. The default computations allow one to declare that a symbol in-
herits OperatorSymbol without producing specification errors for every context containing
that symbol. This advantage is offset by the fact that if one forgets to provide appropriate
overriding computations, the generated compiler will silently ignore certain errors in the
input program.

Let ‘el’, ‘e2’, and ‘e3’ all play the ExpressionSymbol role, and ‘rator’ play the
OperatorSymbol role. A monadic (dyadic) context is one in which the parent ‘e1’ delivers
the result of applying ‘rator’ to the operand(s). The following provide rule computations
to set ‘rator’.Oper, ‘el’.Type, and ‘e2’.Required (plus ‘e3’.Required if present):

e MonadicContext(‘el’, ‘rator’,‘e2’)
e DyadicContext(‘el’, ‘rator’, ‘e2’,‘e3’)

Contexts with arbitrary numbers of operands are discussed in the next section.

18 Type Analysis

SYMBOL Operator INHERITS OperatorSymbol END;

RULE: Expr ::= Expr Operator Expr COMPUTE
DyadicContext (Expr[1],0perator,Expr[2] ,Expr[3]);

END;

RULE: Operator ::= ’+’ COMPUTE
Operator.Indic=PlusInd;

END;

The array access rule also fits the DyadicContext pattern, but has no symbol playing
the OperatorSymbol role. In such cases, the ‘rator’ argument is omitted and the indication
supplied by an additional context-dependent rule computation.

Let ‘ind’ be a definition table key representing an indication. Indication(‘ind’) pro-
vides the rule computations to set the node’s indication to ‘ind’.

If the indication indexInd’s operator set includes one access operator for every array type
(see Section 4.4 [Operator definitions], page 26), then the following computation implements
the type relationship in an array access:

SYMBOL Subscript INHERITS ExpressionSymbol END;

RULE: Expr ::= Expr ’[’ Subscript ’]’ COMPUTE
DyadicContext (Expr[1], ,Expr[2],Subscript);
Indication(indexInd);

END;

Note that Expr[2] can be any expression yielding an array value; it need not be a simple
array name.

In some cases it is useful to know the name of the operator selected from the indication
set. The OperatorSymbol.0Oper attribute normally supplies this information, but when
there is no symbol playing that role the value can be accessed via a context-dependent rule
computation:

OperName Yields the operator selected from the context’s indication set. If no operator
can be selected, the result is the unknown operator.

3.5 Operators with operand lists

Function calls and multidimensional array references are common examples of expression
contexts whose operators have operand lists rather than explicit operands. One symbol
on the right-hand side of the rule defining such a context characterizes the entire list of
operands. It inherits the OpndExprListRoot role.

The symbol defining an operand in the list inherits the OpndExprListElem role.
OpndExprListElem inherits the ExpressionSymbol role, and overrides ExpressionSymbol’s
default computation of the Required attribute in all upper contexts.

Let ‘e’ be a grammar symbol playing the ExpressionSymbol role, ‘rator’ be a grammar
symbol playing the OperatorSymbol role, and ‘rands’ be a grammar symbol playing the

Chapter 3: Expressions 19

OpndExprListRoot role. A list context is one in which the parent ‘e’ delivers the result of ap-
plying ‘rator’ to the operand list ‘rands’. ListContext(‘e’, ‘rator’, ‘rands’) provides
the rule computations to set ‘e’. Type, ‘rator’.Oper, and OpndExprListElem.Required for
each OpndExprListElem descendant of ‘rands’.

If the language has multi-dimensional array references, they can be implemented using
a strategy that differs from that of the previous section:

SYMBOL Subscripts INHERITS OpndExprListRoot END;
SYMBOL Subscript INHERITS OpndExprListElem END;

RULE: Expr ::= Expr ’[’ Subscripts ’]’ COMPUTE
ListContext (Expr[1],,Subscripts);
Indication(GetAccessor (Expr[2].Type,NoKey));

END;

RULE: Subscripts LISTOF Subscript END;

RULE: Subscript ::= Expr COMPUTE
TransferContext (Subscript,Expr) ;
END;

This computation assumes that the indication is the value of the Accessor property of the
array type (see Chapter 4 [User-Defined Types|, page 23).

Some languages have wariadic operators — operators taking a variable number of
operands. The most common of these are max and min, which can take two or more
numeric operands. All of the operands must ultimately be of the same type, so the
situation is similar to that of a balanced context.

For type checking purposes, the variadic operator can be considered to have a single
operand, whose type is determined by balancing the elements of the list (see Section 3.3
[Expression contexts without operators|, page 15). Of course this form of operand list must
be distinguished syntactically from a normal list operand:

SYMBOL VarRands INHERITS BalanceListRoot END;
SYMBOL VarRand INHERITS BalanceListElem END;

RULE: Expr ::= VarOper ’(’ VarRands ’)’ COMPUTE
MonadicContext (Expr,VarOper,VarRands)
END;

RULE: VarRands LISTOF VarRand END;

RULE: VarRand ::= Expr COMPUTE
TransferContext (Actual ,Expr) ;
END;

20 Type Analysis

3.6 Type conversion

The acceptableAs relation models implicit type conversion in the context of operators
applied to operands. In other contexts, additional type conversions may be possible. For
example, both Java and C allow a floating-point value to be assigned to an integer vari-
able. That conversion cannot be modeled by the acceptableAs relation (see Section 1.4
[Language-defined coercibility], page 2).

Additional type conversions such as those taking place on assignment can be modeled by
specific conversion operators. An indication is associated with each context in which addi-
tional type conversions are possible, and the indication’s set contains exactly the conversions
allowable in that context.

Let ‘e1’ and ‘e2’ play the ExpressionSymbol role, and ‘rator’ play the OperatorSymbol
role. A conversion context is one in which the rules of the language allow the type
conversions in ‘rator’.Indic’s set to be applied to the value yielded by ‘€2’ (in
addition to any coercions) in order to obtain the type that must be yielded by
‘el’. ConversionContext(‘el’, ‘rator’, ‘e2’) provides rule computations to set
‘rator’.Oper, ‘el’.Type, and ‘e2’.Required. If no additional conversion operator is
required, or if none can be selected from ‘rator’.Indic’s set, then ‘rator’.0Oper is set to
the unknown operator and both ‘e1’.Type and ‘e2’.Required are set to ‘el’.Required.

In C, an actual argument to a function call may be implicitly converted to the type of
the corresponding formal parameter prior to the function call. The same set of conversions
can be used in assignment contexts, so assume that the indication is assignCvt:

SYMBOL Actual INHERITS OpndExprListElem END;

RULE: Actual ::= Expr COMPUTE
ConversionContext (Actual, ,Expr);
Indication(assignCvt);

END;

Let ‘e1’ and ‘e2’ play the ExpressionSymbol role, ‘rator’ play the OperatorSymbol role,
and ‘type’ yield a DefTableKey value representing a type. A cast context is a conversion
context in which the desired type is inherent in the context itself, rather than being de-
termined by ‘e1l’. CastContext(‘el’, ‘rator’, ‘e2’, ‘type’) provides rule computations
to set ‘rator’.Oper, ‘el’.Type, and ‘e2’.Required. If no additional conversion operator is
required, or if none can be selected from ‘rator’.Indic’s set, then ‘rator’.0Oper is set to
the unknown operator and both ‘el’.Type and ‘e2’.Required are set to ‘type’.

The C cast expression is an example of a cast context. Here we assume that castInd is
an indication whose set consists of all of the possible C conversions:

RULE: Expr ::= ’(’ Type ’)’ Expr COMPUTE
CastContext (Expr[1], ,Expr[2],Type.Type);
Indication(castInd);

END;

Let ‘e2’ play the ExpressionSymbol role, ‘rator’ play the OperatorSymbol role, and
‘type’ yield a DefTableKey value representing a type. A root context is a conversion context
in which the desired type is inherent in the context itself, which is not an expression context.

Chapter 3: Expressions 21

RootContext (‘type’, ‘rator’, ‘e2’) provides rule computations to set ‘rator’.0Oper and
‘e2’.Required. If no additional conversion operator is required, or if none can be se-
lected from ‘rator’.Indic’s set, then ‘rator’.Oper is set to the unknown operator and
‘e2’.Required is set to ‘type’.

The C return statement is an example of a root context. It is not itself an expression,
but it has an expression operand. That operand must yield the return type of the function,
which is inherent in the context of the return statement, and can be obtained from the
Function node. Here we assume that assignInd is an indication whose set consists of all
of the possible C assignment conversions:

RULE: Statement ::= ’return’ Expr COMPUTE
RootContext (INCLUDING (Function.ResultType), ,Expr);
Indication(assignInd);

END;

23

4 User-Defined Types

A language that permits user-defined types must provide constructs for the user to denote
such types. These constructs are called type denotations. If a programmer writes two type
denotations that look the same, it is natural to ask whether they represent the same type.
There are two general answers to this question:

Name equivalence
Each type denotation that the programmer writes represents a distinct type.

Structural equivalence
Two type denotations represent the same type if they are constructed in the
same way and if corresponding components are the same (see Chapter 5 [Struc-
tural Type Equivalence|, page 31).

All of the techniques discussed in this document apply independently of the selection of
name equivalence or structural equivalence among user-defined types.

A type identifier is a name used in a source language program to refer to a type. It is
important to distinguish between the concept of a type and the concept of a type identifier,
using different keys to implement them, because a particular type might have zero or more
type identifiers referring to it. For example, consider the following snippet of C code:

typedef float time;

typedef float distance;

typedef struct { time t; distance d; } leg;
leg trip[100];

This snippet creates two user-defined types, a structure type and an array (or pointer) type.
Moreover, it defines three type identifiers, time, distance, and leg. The first two refer to
the language-defined float type, and the third refers to the structure type; the array type
is anonymous — no type identifier refers to it. Seven definition table keys are therefore
associated with the types and type identifiers of this snippet; three more are associated
with the typed entities t, d, and trip (see Chapter 2 [Typed Entities], page 7).

The Typing module exports computational roles to implement the definition and use of
user-defined types:

TypeDenotation
The computational role inherited by a grammar symbol that represents a sub-
tree denoting a type.

TypeDefDefId
The computational role inherited by a grammar symbol that represents a defin-
ing occurrence of a type identifier.

TypeDefUseld
The computational role inherited by a grammar symbol that represents an
applied occurrence of a type identifier.

24 Type Analysis

4.1 Type denotations

Type denotations are language constructs that describe user-defined types. The symbol on
the left-hand side of a rule defining a type denotation characterizes the type denoted. It
inherits the TypeDenotation role, which provides three attributes:

Type A DefTableKey-valued attribute representing the type denoted by this subtree.
This attribute is set by a module computation that should never be overrid-
den by the user. It should be used in any computation that does not require
properties of the type.

TypeKey A DefTableKey-valued attribute representing the type denoted by this subtree.
This attribute is set by a module computation that should never be overridden
by the user. It should be used in any computation that accesses properties of
the type.

GotType A void attribute representing the fact that information characterizing a user-
defined type has been stored as properties of the key TypeDenotation. Type.

The information stored as properties of the definition table key TypeDenotation.Type
cannot be dependent on the results of type analysis (see Section 7.4 [Dependences for typed
entities|, page 42).

For example, some languages (e.g. Modula-3, Ada) allow a user to define a subrange
type that is characterized by its bounds. The bound information may be needed in various
contexts where the type is used, and therefore it is reasonable to store that information
as properties of the subrange type’s key. Suppose, therefore, that Lower and Upper are
defined as integer-valued properties. Bound information is independent of any aspect of
type analysis:

SYMBOL SubrangeSpec INHERITS TypeDenotation END;
RULE: SubrangeSpec ::= ’[’ Number ’T0’ Number ’]’ COMPUTE
SubrangeSpec.GotType+=
ORDER (
ResetLower (SubrangeSpec.Type,atoi(StringTable (Number[1]))),
ResetUpper (SubrangeSpec.Type,atoi(StringTable (Number[2]))));
END;
Here Number is a non-literal terminal symbol whose value is the digit string appearing in
the source text; atoi is the string-to-integer conversion routine from the C library.

4.2 Type identifiers

The computational role TypeDefDefId is inherited by a defining occurrence of a type iden-
tifier. It provides two attributes:

Type A DefTableKey value representing the type named by the type identifier. This
attribute must be set by a user computation. It should be used in any compu-
tation that does not require properties of the type.

TypeKey A DefTableKey-valued attribute representing the type denoted by this subtree.
This attribute is set by a module computation that should never be overridden
by the user. It should be used in any computation that accesses properties of
the type.

Chapter 4: User-Defined Types 25

The computational role TypeDefUseId is inherited by an applied occurrence of a type
identifier. It provides two attributes:

Type A DefTableKey value representing the type named by the type identifier. This
attribute is set by a module computation that should never be overridden by
the user. It should be used in any computation that does not require properties
of the type.

TypeKey A DefTableKey-valued attribute representing the type denoted by this subtree.
This attribute is set by a module computation that should never be overridden
by the user. It should be used in any computation that accesses properties of
the type.

4.3 Referring to a type

A type might be referenced in program text in any of three different ways, each illustrated
by a Java or C variable definition:

1. By writing a keyword, as in int v;

2. By writing a type identifier, as in t v;

3. By writing a type denotation, as in struct {int i; float f;} v;

Each of these representations of a type uses its own mechanism for encoding the type. In
order to standardize the encoding, a type reference is normally represented in the tree by a
distinct symbol having a DefTableKey-valued Type attribute (see Section 2.1 [Establishing
the type of an entity], page 7). For example, Type plays that role in this representation for
a variable declaration:

RULE: VrblDecl ::= Type VarIdDefs ’;’ COMPUTE
VrblDecl.Type=Type.Type;
END;

Here the value of Type.Type represents some type. That attribute must be defined by
providing a rule establishing the type represented by a type identifier, a rule establishing
each language-defined type represented by a keyword, and a rule establishing each user-
defined type represented by a type denotation:

SYMBOL TypIdUse INHERITS TypeDefUseId END;

RULE: Type ::= TypldUse COMPUTE
Type.Type=TypldUse.Type;

END;

RULE: Type ::= ’int’ COMPUTE
Type.Type=intType;

END;

RULE: Type ::= SubrangeSpec COMPUTE

Type.Type=SubrangeSpec.Type;
END;

26 Type Analysis

The Type attributes discussed in this chapter generally do not give direct access to
properties of the type they represent, because many of their values are intermediate in
the type analysis computations (see Section 7.1 [Dependences among types and type iden-
tifiers|, page 40). If it is necessary to access properties of a type at a symbol inheriting
TypeDenotation, TypeDefDefId or TypeDefUseld, use the TypeKey attribute. Values of
the Type attribute of a symbol inheriting ExpressionSymbol or TypedUseId can be used
directly to access type properties.

4.4 Operator, function, and method definitions

A user-defined type is often associated with one or more operators. For example, an ar-
ray type requires an access operator (see Section 3.4 [Operators with explicit operands],
page 17). The Expression module provides computational roles and rule computations to
define these operators:

OperatorDefs
The computational role inherited by a grammar symbol that represents a con-
text where operators are defined.

OpndTypeListRoot

OpndTypeListElem
Computational roles inherited by grammar symbols that represent operand def-
inition lists.

MonadicOperator
DyadicOperator
ListOperator
Coercible
Rule computations implementing definition contexts.

All operators associated with user-defined types must be added to the database of valid
operators before type analysis of expressions can begin. This dependence is made explicit
by having the left-hand side symbol of any rule in which operators are defined inherit the
OperatorDefs role. One attribute is used to express the dependence:

GotOper A void attribute indicating that all of the operator definitions in this rule have
been carried out. It is set by a module computation that should be overridden
by the user.

The OpndTypeListRoot role is inherited by a grammar symbol representing a list of
operand types. It has one attribute:

OpndTypeList
A synthesized attribute whose DefTableKeyList value is a list of the operand
types in reverse order. It is set by a module computation that should not be
overridden by the user.

The OpndTypeListElem role is inherited by a grammar symbol representing a single
operand type in a list. It must be a descendant of a node playing the OpndTypeListRoot
role, and has one attribute:

Type A synthesized attribute whose DefTableKey value is set by user computation
to represent the operand type.

Chapter 4: User-Defined Types 27

Operators are actually defined by rule computations. Let ‘ind’; ‘opr’, ‘rand’, ‘randl’,
‘rand?2’, and ‘rslt’ be definition table keys and ‘rands’ be a list of definition table keys.

MonadicOperator(‘ind’, ‘opr’, ‘rand’, ‘rslt’)
Adds operator ‘opr’(‘rand’): ‘rslt’ to the set named by indication ‘ind’.

DyadicOperator(‘ind’, ‘opr’, ‘randl’, ‘rand2’, ‘rslt’)
Adds operator ‘opr’(‘randl’, ‘rand2’): ‘rslt’ to the set named by indica-
tion ‘ind’.

ListOperator(‘ind’, ‘opr’, ‘rands’, ‘rslt’)
Adds operator ‘opr’ (t1,...,tn): ‘rslt’ to the set named by indication ‘ind’.
Here t1,...,tn are the values obtained from ‘rands’.

Coercible(‘opr’, ‘rand’, ‘rslt’)
Adds coercion ‘opr’ (‘rand’): ‘rslt’ to the coercions in the database.

The actual value of ‘opr’ is often irrelevant in these computations, because the designer does
not ask which operator was selected from the given indication. The Expression module
provides the known key NoOprName for use in these situations.

Consider a type denotation for one-dimensional arrays. Assume that a subscript must be
of the language-defined integer type, and that each new array type overloads the standard
array indexing indication indexInd with the indexing operator for that array (see Section 3.4
[Operators with explicit operands], page 17). The operator name is uninteresting:

SYMBOL ArraySpec INHERITS TypeDenotation, OperatorDefs END;

RULE: ArraySpec ::= Type ’[’ ’]° COMPUTE
ArraySpec.GotOper+=
DyadicOperator (
indexInd,
NoOprName,
ArraySpec.Type,
intType, Type.Type) ;
END;

Another approach defines the Accessor property of the array type to be an indication
with a singleton operator set (see Section 3.4 [Operators with explicit operands], page 17):

28 Type Analysis

ATTR Indic: DefTableKey;
SYMBOL IndexTypes INHERITS OpndTypeListRoot END;

RULE: ArraySpec ::= Type ’[’ IndexTypes ’]’ COMPUTE
.Indic=NewKey () ;
ArraySpec.GotType+=ResetAccessor (ArraySpec.Type, .Indic);
ArraySpec.GotOper+=
ListOperator(
.Indic,
NoOprName,
IndexTypes.OpndTypelist,
Type[1].Type);
END;

Functions and methods are simply operators with operand lists. These operators over-
load the indication that is the function or method name. In many cases, of course, a
singleton operator set will be associated with a function or method name. The operator
name may or may not be interesting, depending on how the designer chooses to interpret
the results of type analysis.

Java method definitions overload the method identifier:

SYMBOL MethodHeader INHERITS OperatorDefs END;
SYMBOL Formals INHERITS OpndTypeListRoot END;
RULE: MethodHeader ::= Type MethIdDef ’(’ Formals ’)’ COMPUTE
MethodHeader.GotOper+=
ListOperator (
MethIdDef .Key,
NoOprName,
Formals.OpndTypelist,
Type.Type);
END;

The corresponding method call uses the method identifier as the operator symbol in a list
context. Its indication is its Key attribute, as in the declaration:

SYMBOL MethIdUse INHERITS OperatorSymbol COMPUTE
SYNT.Indic=THIS.Key;

END;

SYMBOL Arguments INHERITS OpndExprListRoot END;

RULE: Expr ::= Expr ’.’ MethIdUse ’(’ Arguments ’)’ COMPUTE
ListContext (Expr[1],MethIdUse,Arguments) ;
END;

Every value in a C enumeration is coercible to an integer:

Chapter 4: User-Defined Types 29

SYMBOL enum_specifier INHERITS TypeDenotation, OperatorSymbol END;

RULE: enum_specifier ::= ’enum’ ’{’ enumerator_list ’}’
enum_specifier.GotOper+=
Coercible(NoOprName,enum_specifier.Type,intType) ;
END;

4.5 Reducing specification size

A user type definition often requires definition of a number of operators, based on the
relationship between the new type and its components. Although all of those operations
can be defined using the techniques of the previous section, it may be simpler to define a
“template” for the particular type constructor and then instantiate that template at each
corresponding type denotation.

The necessary information can be captured in an OIL class (see Section “Class definition”
in Oil Reference Manual). For example, a set type in Pascal implies operators for union,
intersection, membership, and comparison:

CLASS setType(baseType) BEGIN
OPER
setop(setType,setType) : setType;
setmember (baseType,setType) : boolType;
setrel(setType,setType): boolType;
COERCION
(emptyType) : setType;
END;

INDICATION
plus: setop;
minus: setop;
star: setop;
in: setmember;
equal: setrel;
1sgt: setrel;
lessequal: setrel;
greaterequal: setrel;

Within the class definition, the class name (setType in this example) represents the type
being defined. The parameters of the class (e.g. baseType) represent the related types.
Thus a set requires a set member operation that takes a value of the base type and a value
of the set type, returning a Boolean. Notice that the designer chose to use the same operator
for union, intersection, and difference because all of these operators have the same signature
and distinguishing them is irrelevant for type analysis.

Let ‘c1’ be an OIL class name, and ‘typ’, ‘argl’, ‘arg?’, ‘arg3’ be definition table keys
representing types. Each of the following rule computations instantiates an OIL class with
a specific number of parameters:

30 Type Analysis

InstClassO0(c,typ)

InstClassi(c,typ,argl)

InstClass2(c,typ,argl,arg2)

InstClass3(c,typ,argl,arg2,arg3)
Create the operators defined by OIL class ‘cl’ for type ‘typ’. Types ‘argl’,
‘arg?’, and ‘arg3’ are the parameters of the instantiation:

A class instantiation creates operators, so it should have the GotOper attribute as a
postcondition:

SYMBOL TypeDenoter INHERITS TypeDenotation, OperatorDefs END;

RULE: TypeDenoter ::= ’set’ ’of’ type COMPUTE
TypeDenoter.GotOper+=InstClassl(setType, TypeDenoter.Type,type.Type) ;
END;

31

5 Structural Type Equivalence

The specific rules governing structural equivalence of types vary greatly from one language
to another. Nevertheless, their effect on the type analysis task can be described in a manner
that is independent of those rules. That effect is embodied in the StructEquiv module,
instantiated by

$/Type/StructEquiv.fw

5.1 Partitioning the set of types

This module defines two types as structurally equivalent if they satisfy two conditions:
1. They might be equivalent according to the language definition.

2. Corresponding components have equivalent types.

For example, consider the structure types in the following variable declarations:

struct a { int f; struct a *g; } x;
struct b { int h; struct b *i; } y;
struct ¢ { struct c *i; int h; } z;

The first two have the same components in the same order, but the field names are different.
The second and third have the same field names naming the same components, but the order
of those components is different. Depending on the rules of the language, either pair could
be equivalent or all three could be distinct.

A designer specifies possibly-equivalent types by partitioning a subset of the set of types
such that all of the types in a particular block of the partition might be equivalent according
to the rules of the language. Types assigned to different blocks can never be equivalent. If
a type is not assigned to any block, then it is assumed to be unique. An ordered (possibly
empty) set of components may be associated with each type when it is assigned to a block.

Let ‘type’ and ‘set’ be definition table keys, and ‘components’ be a list of defini-
tion table keys. AddTypeToBlock(‘type’, ‘block’, ‘components’) adds type ‘type’ to
the partition block defined by ‘block’. It also sets the DefTableKeyList-valued property
ComponentTypes of ‘type’ to ‘components’.

Suppose that the designer chose to assign every structure type to the same set (repre-
sented by a known key), and to list the field types in order of appearance. Then variables
x and y above would have the same type, but z would have a different type. Another
possibility would be to generate a unique definition table key on the basis of the sorted list
of field identifiers, and then to list the field types in the order of their sorted identifiers.
Variables y and z would then have the same type and x would have a different type.

5.2 Computing equivalence classes
Let ‘S1°,...,‘Sp’ be the partition established by invocations of AddTypeToBlock. For each
type ‘t’, let ‘f£1(t)’,...,'fn(t)’ be the ordered list of the component types.

Computations supplied by the StructEquiv module then find the partition {‘E1’,...,'Eq’}
having fewest blocks ‘Ei’ such that:

1. Each ‘Ei’ is a subset of some ‘Sj’.

2. ‘¥’ and ‘y’ in ‘Ei’ implies that ‘fj(x)’ and ‘f£j(y)’ are in some one ‘Ek’, for all ‘fj’.

32 Type Analysis

The blocks ‘Ei’ are the equivalence classes determined by refining the original partition
introduced by AddTypeToBlock on the basis of the component types.

The algorithm then selects an arbitrary member of each ‘Ei’ as the representative type
for that equivalence class, and alters the properties of the other members of that class so that
they act as type identifiers pointing to the key for the representative type (see Section 7.1
[Dependences among types and type identifiers|, page 40). This means that the values of
an arbitrary property of the key used to represent a type in subsequent computation may
not be the value of that property set at a specific instance of a type denotation for that
type (see Section 4.3 [Referring to a type], page 25).

5.3 Functions as typed entities

Many languages have the concept that a function is a typed entity. Such a language pro-
vides a form of type denotation that can describe function types. Function definitions also
implicitly describe function types, since there is usually no way of using a type identifier
to specify the type of a function. Thus every function definition must also be considered a
type denotation.

Function definitions are operator definitions, defining an operator that is used verify the
type-correctness of the function invocation. Because the structural equivalence algorithm
will select an arbitrary element to represent the equivalence class, every function type
denotation must also define an invoker.

Modula-3 has constructs representing type denotations for function types (ProcTy) and
function definitions (Procedure) that could be specified as follows (a function invocation is
also given):

SYMBOL Formals INHERITS OpndTypeListRoot END;
SYMBOL ProcTy INHERITS TypeDenotation, OperatorDefs END;

RULE: ProcTy ::= ’PROCEDURE’ ’(’ Formals ’)’ ’:’ Type COMPUTE
.Indic=NewKey () ;
ProcTy.GotType+=
ORDER (
ResetInvoker (ProcTy.Type, .Indic),
AddTypeToBlock(
ProcTy.Type,
procClass,
ConsDefTableKeyList (Type.Type,Formals.ParameterTypelist)));
ProcTy.GotOper+=
ListOperator(.Indic,NoOprName,Formals.ParameterTypeList,Type.Type);
END;

Chapter 5: Structural Type Equivalence 33

SYMBOL Procedure INHERITS TypeDenotation, OperatorDefs END;

RULE: Procedure ::= ’(’ Formals ’)’ ’:’ Type ’=’ Block COMPUTE
Procedure.EqClass=procClass;
Procedure.ComponentTypes=
ConsDefTableKeyList (Type.Type,Formals.ParameterTypelist) ;
.Indic=NewKey();
Procedure.GotType+=
ORDER (
ResetInvoker (Procedure.Type, .Indic),
AddTypeToBlock(
Procedure.Type,
procClass,
ConsDefTableKeyList (Type.Type,Formals.ParameterTypelList)));
Procedure.GotOper+=
ListOperator(.Indic,NoOprName,Formals.ParameterTypeList,Type.Type);
END;

SYMBOL Expr INHERITS ExpressionSymbol END;
SYMBOL Actuals INHERITS OpndExprListRoot END;

RULE: Expr ::= Expr ’(’ Actuals ’)’ COMPUTE
ListContext (Expr[1],,Actuals);
Indication(GetInvoker (Expr[2].Type,NoKey));

END;

35

6 Error Reporting in Type Analysis

Language-dependent error reporting involves checks based on the types associated with
program constructs by the computations specified in earlier chapters. For example, object-
oriented languages differ in their requirements for overriding methods when extending a class
definition. One possibility is to require that the type of each parameter of the overriding
method be a supertype of the corresponding parameter type of the overridden method,
and that the result type of the overriding method be a subtype of the result type of the
overridden method. The type analysis modules will establish the complete signatures of
both methods, and the subtype/supertype relation among all type pairs. Thus only the
actual check remains to be written.

Some errors make it impossible to associate any type with a program construct, and
these are reported by the modules. Operations are also made available to support detection
of incorrect typing.

6.1 Verifying typed identifier usage

An applied occurrence of an identifier that purports to represent a typed entity inherits the
TypedIdUse role. The value of its Type attribute should not be NoKey, and the identifier
itself should not be a type identifier. Both of these conditions can be checked by inheriting
the ChkTypedUseld role:

SYMBOL ExpIdUse INHERITS ChkTypedUseId END;

If the identifier ‘id’ at an ExpIdUse node is bound, but the type is unknown, the
ChkTypedUseId computation will issue the following report at the source coordinates of
4id7

Must denote a typed object: ‘id’
If the identifier ‘id’ at an ExpIdUse node is a type identifier, the report would be:

Type identifier not allowed: ‘id’

6.2 Verifying type identifier usage

Both defining and applied occurrences of type identifiers can be checked for validity. In each
case, the value of the Type attribute must be a definition table key whose IsType property
has the value 1. Two roles are available for this purpose:

ChkTypeDefDefId
reports an error if the Type attribute does not refer to a type, or if the type
refers to itself.

ChkTypeDefUseld
reports an error if the Type attribute does not refer to a type.

6.3 Verifying type consistency within an expression
The Expression module provides default error reporting associated with the following roles:

ExpressionSymbol

Condition: ‘e’ .Type is not acceptable as ‘e’ .Required.

36 Type Analysis

Message: ‘Incorrect type for this context’

Override symbols:
ExpMsg, ExpErr, ExpError

OperatorSymbol
Condition: The indication is valid but no operator could be identified.

Message: ‘Incorrect operand type(s) for this operator’

Override symbols:
OprMsg, OprErr, OprError

OpndExprListRoot

Condition: The function requires more arguments than are present.
Message: ‘Too few arguments’

Override symbols:
LstMsg, LstErr, LstError

OpndExprListElem
Condition: The function requires fewer arguments than are present.

Message: ‘Too many arguments’

Override symbols:
ArgMsg, ArgErr, ArgError

This error reporting can be changed by overriding computations for the ‘xxx’Msg at-
tribute. The ‘xxx’Err attribute has the value 1 if the error condition is met, 0 otherwise.
Thus the overriding computation might be of the form:

‘s’. ‘xxx’Msg=
IF(‘s’. ‘xxx’Err,message (ERROR, "My report",0,COORDREF)) ;
Because ‘s’.‘xxx’Msg is of type VOID, you can remove a report completely by setting
‘s’. ‘xxx’Msg to "no".

If you wish to override the message in every context, write the overriding computation
as a symbol computation in the lower context of the override symbol specified above. In
this case, ‘xxx’ would be SYNT. Here is an example, changing the error report for invalid
operators in all contexts:

SYMBOL OprError COMPUTE
SYNT.OprMsg=
IF(SYNT.OprErr,message (ERROR, "Invalid operator",0,COORDREF)) ;
END;

If you wish to override the message in a few specific contexts, write the overriding compu-
tation as a rule computation in the lower context of a symbol inheriting the computational
role. In this case, ‘xxx’ would be the symbol on the left-hand side of the rule. Here is
an example, changing the standard expression error report to be more specific for function
arguments:

RULE: Actual ::= Expr COMPUTE
Actual .ExpMsg=
IF(Actual .ExpErr,message (ERROR, "Wrong argument type",0,COORDREF)) ;
END;

Chapter 6: Error Reporting in Type Analysis 37

6.4 Support for context checking

As noted in the previous section, OperatorSymbol role computations normally report an
error when an indication is valid but no operator can be identified. The Expression module
exports two context-dependent rule computations for use when an expression node has no
children playing that role. One computation tests the indication and the other tests the
operator:

BadIndication
Yields 1 if the operator indication supplied by Indication is unknown, 0 oth-
erwise.

BadOperator
Yields 1 if the indication is valid but no operator can be selected from that
indication’s set, 0 otherwise.

Consider an expression in which a function is applied to arguments (see Section 5.3
[Functions as typed entities], page 32):

SYMBOL Expr INHERITS ExpressionSymbol END;
SYMBOL Actuals INHERITS OpndExprListRoot END;

RULE: Expr ::= Expr ’(’ Actuals ’)’ COMPUTE
ListContext (Expr[1],,Actuals);
Indication(GetInvoker (Expr[2].Type,NoKey));
IF(BadIndication,
message (ERROR, "Invalid function",0,COORDREF));
END;
Suppose that, because of a programming error, Expr [2] does not deliver a function type.
In that case, Expr[2].Type would not have the Invoker property, and BadIndication
would yield 1. Alternatively, Expr [2] might deliver a function whose signature does not
match the context. Because the indication has only a singleton operator set, that operator
will be selected regardless of the context. Errors will then be reported by the default
mechanisms as an incorrect number of arguments, arguments of incorrect types, or result
incorrect for the context.

Now consider the array access expression (see Section 3.4 [Operators with explicit
operands|, page 17):

SYMBOL Subscript INHERITS ExpressionSymbol END;

RULE: Expr ::= Expr ’[’ Subscript ’]’ COMPUTE
DyadicContext (Expr[1], ,Expr[2],Subscript);
Indication(indexInd),
IF (BadOperator,
message (ERROR, "Invalid array reference",0,COORDREF)) ;
END;
Suppose that, because of a programming error, Expr [2] does not deliver an array type.
In that case, there would be no operator in indexInd’s operator set whose left operand was
the type returned by Expr [2] and BadOperator would yield 1.

38 Type Analysis

It is sometimes useful to be able to check whether one type is acceptable as another
outside of the situations covered in the previous section. Let ‘from’ and ‘to’ be definition
table keys representing types. IsCoercible(‘from’, ‘to’) yields 1 if a value of type ‘from’
is acceptable wherever an value of type ‘to’ is required; it yields 0 otherwise.

For example, consider a cast involving a reference type in Java. The cast is known to be
correct at compile time if a value is being cast to its superclass. If the value is being cast to
one of its subclasses, however, a run-time check is required. Thus the compiler must accept
such a cast both when the value is acceptable as a value of the cast type and when a value
of the cast type is acceptable as a value of the type being cast:

RULE: Expression ::= ’(’ Expression ’)’ Expression COMPUTE
IF (AND(
NOT(IsCoercible(Expression[2] .Type,Expression[3].Type)),
NOT (IsCoercible(Expression[3] .Type,Expression[2].Type))),
message (ERROR, "Invalid cast",0,COORDREF)) ;
END;

39

7 Dependence in Type Analysis

Type analysis is a complex process, involving several different kinds of entity. Each kind of
entity has properties, which are stored in the definition table under the entity’s key. Those
properties are set and used in a variety of contexts. The result is a collection of implicit
dependence relations among the type analysis computations, and these relations depend on
the language being analyzed.

The modules described in this document make the implicit relations explicit, using void
attributes and dependent expressions in LIDO (see Section “Dependent Expressions” in
LIDO - Reference Manual). Although the explicit dependences work for a wide range of
typical programming languages, one or more of them must sometimes be overridden because
of the rules of a particular language. This chapter explains the implicit dependences that
must be made explicit, how the various modules make them explicit, and some typical
circumstances in which the default treatment fails.

The void attributes that make these dependences explicit are summarized here; the
remainder of this chapter explains them in more detail:

TypeDenotation.GotType
The new type key has been created, and any properties that are not dependent
on final types have been stored in the definition table as properties of that key.

TypeDefDefId.GotDefer
Information that can be used to find the final type has been stored in the
definition table as properties of the key assigned to the identifier by the name
analyzer.

RootType.GotUserTypes
Computations for all type denotations have reached the state represented by
TypeDenotation.GotType and computations for all type identifier definitions
have reached the state represented by TypeDefDefId.GotDefer.

RootType.GotAllTypes
All final types have been determined.

TypedDefld.TypelsSet
Information that can be used to find the final type has been stored in the
definition table as properties of the key assigned to the identifier by the name
analyzer.

RootType.TypelsSet
The state represented by RootType.GotAl1lTypes has been reached, and com-
putations for all typed identifier definitions have reached the state represented
by TypedDefId.TypelsSet.

TypedUseld.TypelsSet
All information needed to find the final type of this typed identifier is available.

OperatorDefs.GotOper
All operator descriptions associated with this construct have been entered into
the operator data base.

40 Type Analysis

RootType.GotAllOpers
Computations for all symbols inheriting OperatorDefs have reached the state
represented by OperatorDefs.GotOper.

7.1 Dependences among types and type identifiers

Consider the following program, written in a C-like notation:

{ Measurement Length;
typedef Inches Measurement;
typedef int Inches;

Length = 3; printf("%d\n", Length + 7);
}
Suppose that the language definition states that type identifiers are statically bound, with
the scope of a declaration being the entire block. Thus all of the type identifier occurrences
have valid bindings. (That would not be the case in C, because in C the scope of a
declaration is from the end of the declaration to the end of the block.)

The type analysis of each of the two occurrences of Length in the last line of the program
is described by the following specifications discussed earlier:

SYMBOL ExpIdUse INHERITS TypedUseId, ChkTypedUseId END;

RULE: Expr ::= ExpldUse COMPUTE
PrimaryContext (Expr,ExpIdUse.Type) ;
END;

The value of ExpIdUse.Type should be intType, the known definition table key created
for the language-defined integer type. Recall that intType was associated with the int
keyword by the following specification:

RULE: Type ::= ’int’ COMPUTE
Type.Type=intType;
END;

The problem is to make the intType value of the Type.Type attribute in this context the
value of the ExpIdUse.Type attribute in the context quoted above.

A human has no trouble seeing how this problem could be solved:

1. The type definition rule sets the TypIdDef .Type attribute of the occurrence of Inches
in the third line of the program to intType.

2. The value of a property of the Inches entity could be set from the value of the
TypIdDef .Type attribute in that context.

3. That property could be used to set the TypIdUse.Type attribute of the occurrence of
Inches in the second line of the program.

4. The type identifier use rule sets the value of the Type.Type attribute in that context
the value of the TypIdUse.Type attribute.

5. Similar reasoning results in the value of the Type.Type attribute in the variable defi-
nition context of the first line of the program becoming intType.

Chapter 7: Dependence in Type Analysis 41

6. Finally, a property of the Length entity is set in the context of the first line of the
program and used to make intType the value of the ExpIdUse.Type attributes in the
two contexts of the last line.

Unfortunately, this solution is based on the human’s ability to see the dependence among
the type identifiers and process the lines of the program in an order determined by that
dependence. One cannot, for example, blindly process the lines in the order in which they
were written.

The dependence among the lines in our example is a result of our use of the known key
intType as the value of a property of the type identifier entities. This strategy is actually an
example of a premature evaluation: There is no need to know the key representing the type
of Length until the ExpIdUse.Type attribute is evaluated. We can avoid the constraint on
the order of rule processing by a “lazy evaluation” strategy in which we use properties of the
type identifier entities to establish a means for determining the value of the ExpIdUse. Type
attribute rather than establishing the value itself.

Recall that there are three possible Type contexts: a keyword, a type denotation, and a
type identifier (see Section 4.3 [Referring to a type], page 25). In the first two, we can set
the value of the Type.Type attribute to the definition table key for the type itself. In the
third, however, the only information that we are guaranteed to have is the definition table
key for the type identifier. However, this information is sufficient to find the definition table
key for the type once all of the type identifiers have been defined. Thus we can simply set
the value of the Type.Type attribute to the definition table key for the type identifier itself
in this context.

The computation provided by the Typing module for the TypeDefDefId context sets a
property of the type identifier entity to the value of the TypeDefDefId.Type attribute (see
Section 4.2 [Type identifiers|, page 24). Effectively, this computation creates a linear list
of type identifier entities ending in a type entity. When all of the entities corresponding to
type identifiers have this property set, the definition table key for a type should be the last
element of each list.

In our example, the value of this property of the identifier Length’s definition table key
would be the definition table key of the identifier Measurement. The value of its property
would be the definition table key of the identifier Inches, whose property would be intType.

There is no guarantee, of course, that the last element of the list is actually a type. For
example, consider the following incorrect program:

{ Measurement Length;
typedef Inches Measurement;
int Inches;

Length = 3; printf("%d\n", Length + 7);
}

Here the last element of the list beginning at Measurement would be Inches, a variable
identifier. The ChkTypeDefUseId role checks the IsType property of the key that is the
last element of the list to report errors of this kind (see Section 6.2 [Verifying type identifier
usage|, page 35).

The void attribute RootType .GotUserTypes represents the state of the computation at
which all of the type denotations and type identifiers have been formed into lists.

42 Type Analysis

7.2 Dependence on structural equivalence

The structural equivalence computation must be carried out after all Type.Type attributes
have been set and linked as described in the previous section, and all of the possibly-
equivalent types have been added to the appropriate blocks of the initial partition (see
Section 5.2 [Computing equivalence classes|, page 31). The latter condition is represented by
all of the void attributes TypeDenotation.GotType having been set. A user can override the
computation of the void attribute RootType.GotType to signal dependence of the structural
equivalence computation on any additional information.

RootType.GotAl1lTypes is the post-condition for the structural equivalence algorithm.
After that computation is complete, however, some definition table keys that were thought
to represent types have had their properties changed so that they represent type identifiers
(see Chapter 5 [Structural Type Equivalence], page 31). Thus scanning a list of definition
table keys to find the last one is only meaningful after RootType.GotAl1Types has been es-
tablished. The TypeKey attributes of TypeDenotation, TypeDefDefId, and TypeDefUseld
reflect this fact.

Sometimes a designer uses a C routine to access type properties. If the keys defining
the types have been obtained from Type attributes of TypeDenotation, TypeDefDefId, or
TypeDefUseId (rather than from TypeKey attributes of those nodes), then FinalType can
be used to obtain the key at the end of the list. The C program must include the header
file Typing.h, and the code must enforce a dependence on RootType.GotAl1Types. If that
dependence is not enforced, the results of invoking FinalType are undefined.

7.3 Dependence on the operator database

The operator identification database used for type analysis within expressions is initial-
ized from the specifications of language-defined types, operators, and operator indications.
Database representations for function operators and operators associated with user-defined
types cannot be constructed until the pre-condition RootType.GotAl11Types has been estab-
lished. Moreover, type analysis of expressions cannot be carried out until that information
has been entered into the database.

Computations that define operators must establish the GotOper post-condition at their
associated OperatorDefs nodes. The computation of RootType.GotOper can be overrid-
den to provide dependence on computations not associated with an OperatorDefs node.
RootType.GotAll0pers represents the state in which the database has been completely
populated. All expression analysis computations have RootType.GotAll0Opers as a pre-
condition.

7.4 Dependences for typed entities

The computation provided for the TypedDefId context sets the TypeOf property of that
identifier’s key to the value of TypedDefId.Type. TypedDeflId.TypelsSet is the post-
condition for that computation. RootType.Al1lTypesAreSet is the conjunction of all of the
TypedDefId.TypelsSet post-conditions plus RootType.GotAllTypes.

If other property values of the identifier’s key are set by user computations in the
lower context of TypedDefId that establish the postcondition SYNT.GotProp, then the set-
ting of these properties is also guaranteed by the post-condition TypedDefId.TypelsSet.

Chapter 7: Dependence in Type Analysis 43

(SYNT.GotProp defaults to the empty postcondition.) Note that if any of these user com-
putations depend on any results from type analysis, a cycle will be created.

A computation supplied by the module sets the TypedUseId.Type attribute to the value
of the TypeOf property of that identifier’s definition table key. TypedUseId.TypeIsSet
is a precondition for that computation. It must guarantee that the TypeOf property
of the identifier has actually been set. The module provides a default computation for
TypedUseId.TypeIsSet in the lower context of the TypedUseId node, requiring the pre-
condition RootType.TypelsSet.

Some languages provide initialized variable declarations, and allow the user to omit either
the type specification or the initializing expression but not both. If the type specification
is omitted, the variable’s type is the type returned by the initializing expression. Here are
some examples of such declarations in Modula-3:

VAR Both: INTEGER := 3;
VAR NoType := Both + 7;
VAR NoInit: INTEGER;
The default computations for the TypeIsSet attributes in this example lead to a cycle:
1. The TypedDefId.Type attribute of NoType depends on TypedUseId.Type for Both.

2. The computation of TypedUseIld.Type for Both has the pre-condition
TypedUseld.TypelsSet.

3. TypedUseld.TypeIsSet depends on RootType.TypelsSet in the default computation.
4. RootType.TypelsSet is the conjunction of all TypedDefId.TypelIsSet attributes.

5. TypedDefId.TypeIsSet for NoType is the post-condition for a computation involving
the TypedDefId.Type attribute of NoType

If the language requires that the initialized declaration of a variable precede any uses of
that variable, then we can override the default dependence as follows:

CHAIN TypeDepend: VOID;

CLASS SYMBOL ROOTCLASS COMPUTE
CHAINSTART HEAD.TypeDepend=THIS.GotType;
END;

RULE: VrblDecl ::= ’VAR’ VarIdDef ’:’ Type ’:=’ Expr COMPUTE
VrblDecl.Type=Type.Type;
VrblDecl.TypeDepend=VarIdDef .TypeIsSet <- Expr.TypeDepend;
END;

RULE: VrblDecl ::= °VAR’ VarIdDef ’:’ Type COMPUTE
VrblDecl.Type=Type.Type;
VrblDecl.TypeDepend=VarIdDef.TypeIsSet <- Expr.TypeDepend;

END;

RULE: VrblDecl ::= °’VAR’ VarIdDef ’:=’ Expr COMPUTE
VrblDecl.Type=Expr.Type;
VrblDecl.TypeDepend=VarIdDef .TypeIsSet <- Expr.TypeDepend;
END;

44 Type Analysis

SYMBOL VarIdUse COMPUTE
SYNT.TypelsSet=THIS.TypeDepend;
THIS.TypeDepend=SYNT.TypelsSet;

END;

If there is no ordering requirement, then a fixed-point computation is required to deter-
mine the variable types. In addition, code generated from the initializing expressions must
be arranged to ensure that a variable’s value is computed before it is used. Finally, such
out-of-order dependence makes the program hard to understand. We strongly recommend
that declaration before use be required if variables are allowed to obtain their type from
their initializers.

45

8 Program-Dependent Property Computation

There are language constructs which need to set a property of an entity that depends on a
property of another entity. If the order of accessing and setting the properties depends on
the particular program, those operations can not be specified by dependent computations in
trees, rather a program dependent mechanism is needed. An example for such a construct
is a variable declaration of the form

like a b;

The variable b is declared to have the same type as the variable a has. A program may
have arbitrary long chains of such type references, which may occur in any order. This
module provides a worklist algorithm to solve such problems: Tree computations create
worklist tasks, which try to access and set certain properties as described by call-back
functions, and store them on the worklist. They are re-executed in sweeps through the
worklist until no futher task can be completed.

The module is instantiated by
$/Type/PropertyWorklist.gnrc+instance=‘prefix’:inst

If the instance parameter is given, the prefix is added to every name exported by that
instantiation, e.g. prefixTaskFct. In the following we write *TaskFct to indicate that
such a prefix will be added to that name. Several instances of the module with different
prefixes may be used, if several worklists are needed,

The module provides the roles *RootWorklist and *WLPropertyTask:

*WLPropertyTask is the central task which creates a worklist task. The attribute
SYNT. *TaskFct has to be set to a pointer to a function which performs the computa-
tion of the worklist task for this context. (Different functions may be chosen in different
*WLPropertyTask contexts.) The values of the following attributes are available when the
function is called during sweeps through the worklist:

INH.*PropKeyA and SYNT.*PropKeyB are keys of type DefTableKey and have the
default NoKey. SYNT.*WLDepOnTaskA and SYNT.*WLDepOnTaskB are pointers of type
PropertyTaskPtr which may be set to point to other worklist task; the default is
NULLPropertyTaskPtr.

The attribute SYNT.*WLTask provides a pointer which identifies the created worklist
task. Its value may be propagated to some other *WLPropertyTask context, the task of
which depends on information from this task.

Each function used as a *TaskFct in a *WLPropertyTask context has to be declared in
a C module where PropertyWL.h is included in the .h and .c file.

All these function declarations have the following signature:
void WLCallBackSetType (PropertyTaskPtr this)

In the body of the function the values of the four attributes, e.g. INH.*PropKeyA, can
be accessed via the parameter, e.g. this->PropKeyA. Furthermore, the coordinates of the
creation context are available by this->coord of type CoordPtr.

In case of the above example with the like construct one could use this->PropKeyA for
the key of the variable, the type of which is to be set, and this->PropKeyB for the variable
which provides the type. The worklist algorithm while sweeping through the list of tasks

46 Type Analysis

re-calls the function for each task until its this->done is set. In this example, the function
would execute

DefTableKey tp = GetTypeOf (this->PropKeyB, NoKey);
if (tp == NoKey) return;

ResetTypeOf (this->PropKeyA, tp);

this->done = 1; return;

Between the start of the worklist algorithm and its completion, no computations in
tree contexts are executed. Hence, there are only two ways to propagate information
from one worklist task to another: either via setting and accessing properties
of this->PropKeyA or this->PropKeyB, or by accessing the data components of
another task via this->WLDepOnTaskA or this->WLDepOnTaskB, e.g. GetTypeOf
(this->WLDepOnTaskA->PropKeyA, NoKey).

This feature can be used to substitute the attribute value propagation between related
*WLPropertyTask contexts. Binding of qualified names like a.b.c is a typical example:
Assume that the TypeOf property of variable identifiers is determined by worklist tasks,
e.g. because of the presence of 1like constructs. Then the task for binding the qualified
identifier ¢ depends on the result of the task for the qualifier a.b. That relation can be
established in the task creation context using the attribute *WLDepOnTaskA, such that the
function call for the worklist task can access the TypeOf property.

The attribute *RootWorklist.*WLSolved indicates that the worklist algorithm has ter-
minated. Any computation which accesses properties computed by worklist tasks have to
depend on it. The worklist algorithm terminates, when a sweep through the list did not com-
plete any task. Some tasks may still be unsolved, e.g. because of missing settings of prop-
erties or cyclic dependences between tasks. The attribute *RootWorklist.*WLOpenTasks
gives the number tasks that remained unsolved. In the creation context of a task it can be
checked whether this particular task completed, using

PTRSELECT (THIS.*WLTask, done) <- INCLUDING *RootWorklist.*WLSolved

The accumulating attribute *RootWorklist.*WLReadyToSolve contributes to the pre-
condition for starting the worklist algorithm. It has to be used if some worklist tasks are
created without notification by the *WLPropertyTask role. The function which creates a
worklist task has the following signature:

PropertyTaskPtr CreatePropertyTask

(PropWLPtr wl,

DefTableKey PropKeyA, DefTableKey PropKeyB,
PropertyTaskPtr WLDepOnTaskA, PropertyTaskPtr WLDepOnTaskB,
WLTaskFctType TaskFct,

CoordPtr coord);

The first parameter is the reference to the list of worklist tasks, it is obtained from the
attribute INCLUDING *RootWorklist.*Worklist; the meaning of the other parameters can
be deduced from their names. It is possible and may be useful in certain cases to call
CreatePropertyTask from inside a worklist function; then care must be taken to guarantee
termination. If the CreatePropertyTask is called in a C module, PropertyWL.h is to be
included.

Index

Symbol roles

ArgErr. ... e 36
ArgError ...l 36
ArgMsg. 36
BalancelListElem....................... 11, 17, 19
BalancelListRoot....................... 11, 17, 19
ChkTypeDefDefId........................ 35
ChkTypeDefUseId.............................. 35
ChkTypedUseId..................coiiinnn. 35, 40
E

EXpErr... 36
ExpError...........l 36
EXpMSg. ..o 36
ExpressionSymbol 11, 12, 15, 18, 33, 35, 37

Rule computations

AddTypeToBlock..................oo.... 31, 32, 33
BadIndicationc.ooiiiiiiiiiiiann. 37
BadOperator.................ol 37
BalanceContext...................... 11, 16
CastContextt 11, 20
Coercible........ovviiiiinnnnniinnnnn.. 26, 27, 29
ConversionContextt 11, 20
DyadicContext...................... 11, 17, 18, 37

DyadicOperator............................ 26, 27

47

L

LstErr. ... 36
LStETTOr ..ottt 36
LstMsg. ... 36
OperatorDefs 26, 27, 28, 30, 32, 33
OperatorSymbol 11, 17, 18, 28, 29, 36
OpndExprListElem.................. 11, 19, 20, 36
OpndExprListRoot........... 11, 19, 28, 33, 36, 37
OpndTypeListElem...........coovviiiiinnnnnnnn. 26
OpndTypeListRoot...................... 26, 28, 32
OPTEXT. 36
OprError 36
OpPIMSg. .\ 36
T

TypedDefId........... ...l 7,8
TypedDefinition.......................... 7, 8,9
TypeDefDefId.............. il 23
TypeDefUseId.............................. 23, 25
TypeDenotation.......... 23, 24, 27, 29, 30, 32, 33
TypedIdDef 9
TypedUseId.............ccoivvnnnnn. 7, 8,9, 15, 40
F

FinalType .. oouuriit it 42
I

Indication........oovviiunnnnnnn. 11, 20, 33, 37
InsStClass ..ovuiiiiii e 30
InstClassl........oiiiiniiiiiiiiiiiia. 30
IsCoercible.......ooiuuiiiiiiiiiiiiiinnn 37
L

ListContextc.... 11, 19, 28, 33, 37
ListOperator................... 26, 27, 28, 32, 33
M

MonadicContext 11, 17, 19
MonadicOperator.................ooinnnnn. 26, 27

48

OperName 11
P

PrimaryContext 11, 15, 40
Attributes

GotOper.................. 26, 27, 28, 29, 30, 32, 33
GOtTYPE « oo 24, 28, 32, 33
I

Indic.. ..o 17
ST P e vttt 1
Oper .. i 17
OperatorDefs.GotOper 39
OperNameoiiiiiiiiiiieniinn... 18
OpndTypeList.....................oooiitt. 26, 28
P

ParameterTypelist 32, 33

General concepts

CLASS, OIL ..ottt 29
COERCION, OIL ... 3,29
E

Expression module..................... 11, 13, 15
I

INDICATION, OIL'uuurieeeeeeeee., 2,29
N

Name equivalence...................o.oi.. 23
NoKey ..o 1

Type Analysis

RootContextoooiiiiii... 11, 21
T

TransferContext 11, 15, 17, 19
Required.......... il 12
RootType.GotAllOperscovvvvvvnnnnnn. 40
RootType.GotALLTypesS ..., 39
RootType.GotUserTypes 39
RootType.TypelsSet.......... oiunn.. 39
T

Type.......ooon.. 12, 24, 25, 26, 28, 32, 33, 37, 40
TypedDefId.TypelsSetcoouiiin. 39
TypeDefDefId.GotDefer 39
TypeDenotation.GotTypecoovvvuennn. 39
TypedUseId.TypelIsSetccoviiiinnnnn. 39
TypelsSeto 42
TypeKeyo 24, 25
OIL CLASS, definitionooue... 29
OIL CLASS, instantiation 29
OIL COERCION.......0iitiiiiiiiiiaeannn 3,29
OIL INDICATION.otitieiieiieaieanne. 2,29
OIL OPER. ...ttt 1,29
OPER, OILottt 1,29
property IsType ..., 1
Specification modules — Expression.... 11, 13, 15
Specification modules — StructEquiv.......... 31
Specification modules — Typing................. 7
StructEquivmodule............ o L 31

Structural equivalence................... 23

Index

T

Type equivalence, name

49
Type equivalence, structural 23
Typed Entities........... oL 7
Typing module............ o il 7

	1 Types, Operators, and Indications
	Language-defined types
	Language-defined operators
	Language-defined indications
	Language-defined coercibility
	Reducing specification size

	2 Typed Entities
	Establishing the type of an entity
	Accessing the type of an entity
	Passing ancillary information

	3 Expressions
	Type analysis of expression trees
	Selecting an operator at an expression node
	Expression contexts without operators
	Operators with explicit operands
	Operators with operand lists
	Type conversion

	4 User-Defined Types
	Type denotations
	Type identifiers
	Referring to a type
	Operator, function, and method definitions
	Reducing specification size

	5 Structural Type Equivalence
	Partitioning the set of types
	Computing equivalence classes
	Functions as typed entities

	6 Error Reporting in Type Analysis
	Verifying typed identifier usage
	Verifying type identifier usage
	Verifying type consistency within an expression
	Support for context checking

	7 Dependence in Type Analysis
	Dependences among types and type identifiers
	Dependence on structural equivalence
	Dependence on the operator database
	Dependences for typed entities

	8 Program-Dependent Property Computation
	Index
	Symbol roles
	Rule computations
	Attributes
	General concepts

