Tree Parsing

Compiler Tools Group
Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO, USA
80309-0425

Table of Contents

1 The Tree To Be Parsed 1
1.1 Tree SEructure.ooiiii e 1
1.2 Decorating Nodes.t 2
1.3 Node Construction Functions 3

2 The Tree Patterns............................... 5
2.1 Rules Describing Tree Nodes. ...,)
2.2 Chain Rules.o 7
2.3 Rules Describing Tree Fragments, 8

3 Actions Carried Out During Parsing......... 11
3.1 Actionsand Values..............oiiiiiiiiiii 11
3.2 Implementing Actionscooiiiiiiiiiiiiiia... 12
3.3 Commutative ACHIONSttt 13

4 Summary of the Specification Language 15
4.1 Declarations.ooiiii i e 15
4.2 RUleS. .. 16

5 Predefined Entities............................. 19

1 The Tree To Be Parsed

Problems amenable to solution by tree parsing involve hierarchical relationships among
entities. Each entity is represented by a node in a tree, and the structure of the tree
represents the hierarchical relationship among the entities represented by its nodes.

The relationships are such that nodes corresponding to entities of a particular kind
always have the same number of children. No constraint is placed on the kinds of children
a particular kind of node can have; only the number of children is fixed. This tree parser
accepts only trees in which each node has no more than two children.

An entity like an integer addition operator is completely characterized by the kind of
node representing it. Integer constants, on the other hand, are not completely characterized
by the fact that they are represented by IntDenotation nodes. Each IntDenotation
node must therefore carry the constant’s value as an attribute. This tree parser allows an
arbitrary number of attributes of arbitrary type to be attached to each node.

A user builds the tree describing the hierarchical relationships among the entities of in-
terest by invoking specific constructor functions. The constructor used to build a particular
node depends on the number of children and the number and type of attributes required
by that node.

This section begins by formalizing the structure of a tree to be parsed. It then charac-
terizes the attributes, and finally explains the naming conventions for the constructors.

1.1 Tree Structure

The tree structure is defined in terms of a set of symbols that constitute a ranked alpha-
bet: Each symbol has an associated arity that determines the number of children a node
representing the symbol will have. Each node of the tree represents a symbol of the ranked
alphabet, and the number of children of a node is the arity of the symbol it represents. Any
such tree is legal; there is no constraint on the symbols represented by the children of a
node, only on their number.

The ranked alphabet is extracted from the specification supplied by the user (see
Chapter 2 [The Tree Patterns|, page 5). The translator verifies that the arity of each
symbol is consistent over the specification.

Each symbol of the ranked alphabet denotes a particular kind of entity. For example,
here is a set of symbols forming a ranked alphabet that could be the basis of a tree describing
simple arithmetic expressions:

IntegerVal FloatingVal IntegerVar FloatingVar
Negative
Plus Minus Star Slash

The symbols in the first row have arity 0, and are therefore represented by leaves of the
tree. Negative has arity 1, and the symbols in the third row all have arity 2. Each symbol
has the obvious meaning when describing an expression:

‘3.1415" FloatingVal
-3’ Negative(IntegerVal)

k-3’ Minus(IntegerVar,IntegerVal)

2 Tree Parsing

‘(ax7)/(j+2)’
Slash(Star(FloatingVar,IntegerVal) ,Plus(IntegerVar,IntegerVal))

The notation here the normal algebraic one: A term is either a symbol of arity 0, or it is a
symbol of arity k followed by a parenthesized list of k terms. Each term corresponds to a
node of the tree.

A tree describing the expression in the first line has one node, representing the symbol
FloatingVal. Because FloatingVal has arity 0, that node has no children. (The value
‘3.1415” would appear as an attribute of the node, see Section 1.2 [Decorating Nodes],
page 2.)

A tree describing the expression in the last line has seven nodes. Four are leaves because
the symbols they represent have arity 0; each of the remaining three has two children
because the symbol it represents has arity 2.

A tree is not acceptable to the tree parser described in this document if any node has
more than two children. Thus no symbol of the ranked alphabet may have arity greater
than 2. That is not a significant restriction, since any tree can be represented as a binary
tree.

Suppose that we want to use trees to describe the following C expressions:
“i>j 7 i-j @ j-i’
“(i=1, j=3, k=5, 1+3) + 7’
Although 7: is usually thought of as a ternary operator, its semantics provide a natural
decomposition into a condition and two alternatives:

Conditional(
Greater(IntegerVar,IntegerVar),
Alternatives (Minus(IntegerVar,IntegerVar) ,Minus(IntegerVar,IntegerVar)))]]

The comma expression might have any number of components, but they can simply be
accumulated from left to right:

Plus(
Comma (
Comma (
Comma (Assign(IntegerVar,IntegerVal) ,Assign(IntegerVar,IntegerVal)),|j
Assign(IntegerVar,IntegerVal)),
Plus(IntegerVar,IntegerVal)),
IntegerVal)

1.2 Decorating Nodes

In addition to its arity, each symbol in the ranked alphabet may be associated with a fixed
number of attributes. Each attribute has a specific type. The attributes decorate the nodes
of the tree, but they do not contribute any structural information.

In the examples of the previous section, the symbols of arity 0 did not provide all of
the necessary information about the leaves. Each symbol of arity 0 specified what the leaf
was, but not which value of that kind it represented. This is often the case with leaves, so
a leaf usually has an associated attribute. Interior nodes, on the other hand, seldom need
attributes.

Chapter 1: The Tree To Be Parsed 3

Each attribute must be given a value of the proper type when the node corresponding
to the symbol is created. This value will not affect the tree parse in any way, but will be
passed unchanged to the function implementing the action associated with the rule used
in the derivation of the node. Thus attributes are a mechanism for passing information
through the tree parse.

1.3 Node Construction Functions

Each node of the tree to be parsed is constructed by invoking a function whose name and
parameters depend on the number of children and attributes of the node. The name always
begins with the characters TP_, followed by the digit representing the number of children.
If there are attributes, the attribute types follow. Each attribute type is preceded by an
underscore.

The set of constructors is determined from the specification supplied by the user (see
Chapter 2 [The Tree Patterns|, page 5). The translator verifies that each occurrence of a
symbol is consistent with respect to the number of children and types of attributes.

Consider the simple expression trees discussed above (see Section 1.1 [Tree Structure],
page 1):
IntegerVal FloatingVal IntegerVar FloatingVar
Negative
Plus Minus Star Slash

Suppose that integer and floating-point values are represented by the integer indexes of
their denotations in the string table (see Section “Character String Storage” in Library Ref-
erence), and variables are represented by definition table keys (see Section “The Definition
Table Module” in Property Definition Language). In that case each tree node represent-
ing either IntegerVal or FloatingVal would be decorated with an int-valued attribute;
each tree node representing either IntegerVar or FloatingVar would be decorated with
a DefTableKey-valued attribute. No other node would have attributes, and four tree con-
struction functions would be created by the translator:

TPNode TP_O_int (int symbol, int attr)
Return a symbol leaf decorated with attr, of type int

TPNode TP_0_DefTableKey (int symbol, DefTableKey attr)
Return a symbol leaf decorated with attr, of type DefTableKey

TPNode TP_1 (int symbol, TPNode child)
Return an undecorated symbol node with one child

TPNode TP_2 (int symbol, TPNode left, TPNode right)
Return an undecorated symbol node with two children

Here’s how the tree describing the expression ‘-=i+1’ could be constructed:

TP_2(
Plus,
TP_1(Negative, TP_O_DefTableKey(IntegerVar, key0fi)),
TP_O_int(IntegerVal, index0f1))

4 Tree Parsing

Here key0fi is a variable holding the definition table key associated with variable i and
index0f1 is a variable holding the string table index of the denotation for 1.

All tree construction functions return values of type TPNode. Attributes can be attached
to nodes with children, although there are no such nodes in the example above. Here’s the
constructor invocation for a node with two children and two integer attributes:

TP_2_int_int(Symbol, childl, child2, attrl, attr2);

2 The Tree Patterns

The tree patterns describe a set of derivations for trees. They are based on the ranked
alphabet of symbols represented by tree nodes and also on a finite set of nonterminals. The
ranked alphabet and the set of nonterminals are disjoint.

Each nonterminal represents a relevant interpretation of a node. For example, if the
tree parser was intended to select machine instructions to implement expression evaluation,
the nonterminal IntReg might be used to represent the interpretation “an integer value in
a register”. A derivation could interpret either a leaf describing an integer constant or a
node describing an addition operation in that way. Another derivation could interpret the
same addition node as “a floating-point value in a register” (possibly represented by the
nonterminal F1tReg).

Each rule characterizes a context in which a specific action is to be performed. For code
selection there might be one rule characterizing an integer addition instruction and another
characterizing a floating-point addition instruction. An integer addition instruction that
required both of its operands to be in registers and delivered its result to a register would
be characterized by a rule involving only IntReg nonterminals.

Most rules characterize contexts consisting of single tree nodes. Some contexts, however,
do not involve any tree nodes at all. Suppose that a node is interpreted as leaving an
integer value in a register, and there is an instruction that converts an integer value in
a register to a floating-point value in a register. If the original node is the child of a
node demanding a floating-point value in a register, the tree parser can supply the implied
conversion instruction by using the rule characterizing its context in the derivation.

It is also possible to write a rule characterizing a context consisting of several nodes.
Some machines have complex addressing functions that involve summing the contents of two
registers and a constant and then accessing a value at the resulting address. In this case,
a single rule with a pattern containing two addition operations and placing appropriate
interpretations on the operands would characterize the context in which the addressing
function action was performed.

The set of patterns is generally ambiguous. In order to disambiguate them, each rule has
an associated cost. Costs are non-negative integer values, and default to 1 if left unspecified.
The tree parser selects the derivation having the lowest total cost. We will ignore the cost
in this chapter (see Chapter 4 [Summary of the Specification Language], page 15).

2.1 Rules Describing Tree Nodes

A rule describing a single tree node has the following general form:

NO ::= s(Ni,aj)
Here NO is a nonterminal, s an element of the ranked alphabet, Ni a (possibly empty) list
of nonterminals, and aj a (possibly empty) list of attribute types. If one of Ni and aj is

empty then the comma separating them is omitted; if both are empty both the comma and
parentheses are omitted.

Recall that trees describing simple arithmetic expressions could be based upon the fol-
lowing ranked alphabet:

IntegerVal FloatingVal IntegerVar FloatingVar

6 Tree Parsing

Negative

Plus Minus Star Slash
Suppose that the tree parser is to select machine instructions that evaluate the expression
described by the tree being parsed. Assume that the target machine has a simple RISC
architecture, in which all operands must be loaded into registers and every operation leaves
its result in a register.

One context relevant to instruction selection is that of an IntegerVal leaf. This context
corresponds to the selection of an instruction to load an integer constant operand into a
register. It could be characterized by the following rule:

IntReg ::= IntegerVal(int)

This rule describes a single node, and has the form NO ::= s(al). NO is the nontermi-
nal IntReg, which places the interpretation “an integer value in a register” on the node.
IntegerVal is the element s of the ranked alphabet. Since IntegerVal has arity 0, no
nonterminals may appear between the parentheses. As discussed above (see Section 1.2
[Decorating Nodes], page 2), the leaf has a single associated attribute to specify the value
it represents. This value is a string table index of type int, so the rule contains the type
identifier int.

Another context related to instruction selection is that of a Plus node. This context
corresponds to the selection of an instruction to add the contents of two registers, leaving
the result in a register. It could be characterized by the following rule:

IntReg ::= Plus(IntReg,IntReg)

This rule describes a single node, and has the form NO ::= s(N1,N2). NO is the nonter-
minal IntReg, which places the interpretation “an integer value in a register” on the node.
Plus is the element s of the ranked alphabet. Since Plus has arity 2, two nonterminals
must appear between the parentheses. IntReg is the appropriate nonterminal in this case,
because it places the interpretation “an integer value in a register” on both children and
the machine’s integer addition instruction requires both of its operands in registers.

If the target machine had floating-point operations as well as integer operations, a com-
plete set of rules characterizing the relevant contexts in trees describing simple arithmetic
expressions might be:

IntReg ::= IntegerVal(int)

IntReg ::= IntegerVar(DefTableKey)
IntReg ::= Negative(IntReg)

IntReg ::= Plus(IntReg,IntReg)
IntReg ::= Minus(IntReg,IntReg)
IntReg ::= Star(IntReg,IntReg)
IntReg ::= Slash(IntReg,IntReg)
FltReg ::= FloatingVal(int)

FltReg ::= FloatingVar (DefTableKey)
FltReg ::= Negative(FltReg)

FltReg ::= Plus(F1ltReg,FltReg)
FltReg ::= Minus(FltReg,FltReg)
FltReg ::= Star(FltReg,FltReg)

FltReg ::= Slash(FltReg,FltReg)

Chapter 2: The Tree Patterns 7

It is important to remember that the tree to be parsed involves only the nodes rep-
resenting the symbols of the ranked alphabet (IntegerVal, Plus, etc.) The tree parser
constructs a derivation of that tree in terms of the tree patterns. That derivation consists
of applications of the rules, and those rules must be applied consistently with respect to the
nonterminals. For example, recall the tree describing ‘k-3’:

‘k-3’ Minus(IntegerVar,IntegerVal)

This tree could be derived by applying the following rules:

IntReg ::= IntegerVar(DefTableKey)
IntReg ::= IntegerVal(int)
IntReg ::= Minus(IntReg,IntReg)

2.2 Chain Rules

A chain rule has the following general form:
NO ::= N1
Here NO and N1 are both nonterminals.

A chain rule is used in the derivation of a tree when the interpretation of a node differs
from the interpretation required by its parent. It does not describe any tree node, but
simply indicates that the difference in interpretations is allowed.

The patterns in the last section (see Section 2.1 [Rules Describing Tree Nodes|, page 5)
cannot derive the tree for the expression ‘k-2.3’:

IntReg ::= IntegerVar(DefTableKey)
F1tReg ::= FloatingVal(int)
IntReg ::= Minus(IntReg,IntReg) /* Fails */

FltReg ::= Minus(FltReg,FltReg) /* Fails also */

Both rules describing the Minus node demand operands of the same interpretation, and in
this tree the operands have different interpretations.

Suppose that it is possible to convert an IntReg to a F1tReg without loss of information.
If this is true, then the value of ‘k’ could be converted to a floating-point value and the
result used as the first child of the Minus node. The possibility of such a conversion is
indicated by adding the following chain rule to the patterns given in the last section:
FltReg ::= IntReg

If this chain rule is one of the patterns then the derivation of ‘k-2.3’ would be:

IntReg ::= IntegerVar (DefTableKey)
FltReg ::= IntReg

FltReg ::= FloatingVal(int)
FltReg ::= Minus(FltReg,FltReg)

Now consider the expression ‘k-3’ from the last section. With the addition of the chain
rule, two derivations are possible:

IntReg ::= IntegerVar(DefTableKey)
IntReg ::= IntegerVal(int)
IntReg ::= Minus(IntReg,IntReg)

8 Tree Parsing

IntReg ::= IntegerVar(DefTableKey)
FltReg ::= IntReg

IntReg ::= IntegerVal(int)

FltReg ::= IntReg

FltReg ::= Minus(FltReg,FltReg)

Remember, however, that each rule has an associated cost. That cost defaults to 1 when
it isn’t specified, so each of the rules in this example has cost 1. The cost of a derivation is
simply the sum of the costs of the rules from which it is constituted. Thus the cost of the
first derivation above is 3 and the cost of the second is 5. The tree parser always selects the
derivation with the lowest cost, so the derivation of ‘k-3’ will be the first of the two given.

2.3 Rules Describing Tree Fragments

The right-hand side of a rule describing a tree fragment defines that fragment with nonter-
minal leaves. Some examples are:

NO ::= s(t(N1),N2)

NO ::= s(N1,t(N2))
NO ::= s(t(N1),u(N2))
NO ::= s(t(s(N1,N2)),N3)

Here NO is a nonterminal, s, t and u are elements of the ranked alphabet, and N1, N2 and
N3 are nonterminals. No attribute types are allowed in in a rule describing a tree fragment.

Recall the tree used to describe a C conditional expression:

4>§ 7 i-j @ j-i’
Conditional(
Greater(IntegerVar,IntegerVar),
Alternatives(
Minus(IntegerVar, IntegerVar),
Minus(IntegerVar,IntegerVar)))

The following rules might be used to describe the tree fragment resulting from the condi-
tional:

IntReg ::= Conditional(IntReg,Alternatives(IntReg,IntReg))
FltReg ::= Conditional(IntReg,Alternatives(F1ltReg,F1tReg))

If these tree fragment rules (and appropriate rules for Greater) are part of the specifi-
cation then the derivation of ‘i>j ? i-j : j-i’ would be:

IntReg ::= IntegerVar (DefTableKey)
IntReg ::= IntegerVar(DefTableKey)
IntReg ::= Greater(IntReg,IntReg)
IntReg ::= IntegerVar(DefTableKey)
IntReg ::= IntegerVar(DefTableKey)
IntReg ::= Minus(IntReg,IntReg)

IntReg ::= IntegerVar(DefTableKey)
IntReg ::= IntegerVar(DefTableKey)
IntReg ::= Minus(IntReg,IntReg)

IntReg ::= Conditional(IntReg,Alternatives(IntReg,IntReg))

Chapter 2: The Tree Patterns 9

Notice that there are no derivation steps corresponding to the components of the tree
fragment resulting from the conditional; there is only a single derivation step corresponding
to the entire fragment.

11

3 Actions Carried Out During Parsing

Each rule has an associated action, written as an identifier:

NO ::= s(Ni,aj) : Actionl
NO ::= N1 : Action2
NO ::= s(t(Ni),Nj) : Action3

The action associated with a rule is carried out each time the rule is used in a derivation.
Each rule may be associated with a distinct action, or a single action may be associated
with several rules.

3.1 Actions and Values

The action carried out for each use of a rule in a derivation is a function application. The
action identifier is the name of the function, and the arguments to which it is applied are the
values of the nonterminals and attributes appearing on the right-hand side of the pattern.
These values are taken in order from left to right. The result of the function becomes the
value of the nonterminal appearing on the left-hand side of the pattern.

For example, consider one of the rules of the specification introduced above (see
Section 2.1 [Rules Describing Tree Nodes|, page 5), augmented by an action called
IntR_loadconst:

IntReg ::= IntegerVal(int) : IntR_loadconst

For each use of the rule IntReg ::= IntegerVal(int) in some derivation, the function
named IntR_loadconst will be applied to the integer-valued attribute of the leaf. The
result of this function application will become the value of the IntReg nonterminal.

The types of the attribute values are stated explicitly in the rules. A type is also
associated with each nonterminal by means of a declaration (see Chapter 4 [Summary of the
Specification Language], page 15). For example, the type associated with the nonterminal
IntReg might be structure of type reg defined as follows:

typedef struct { int register; PTGNode code; } reg;

Here the register field would be the number of the register holding the result and the
code field would be a representation of the assembly language instructions producing the
result in that register (see Section “Introduction” in Pattern-Based Text Generator).

In this case, execution of IntR_loadconst would allocate a register and create a PTG
node representing the assembly language instruction loading the integer constant specified
by the integer-valued attribute of the leaf into that register. It would return a type-reg
structure containing that information. This structure would then become the value of the
IntReg nonterminal.

Here’s another example of a rule, this time augmented by an action called IntRR_sub:

IntReg ::= Minus(IntReg,IntReg) : IntRR_sub
The function named IntRR_sub will be applied to the values returned by the two children
of the Minus node for each use of IntReg ::= Minus(IntReg,IntReg) in some derivation,
and the result will become the value of the IntReg nonterminal on the left-hand side of the
rule. The first argument of IntRR_sub would be the value returned by the action associated
with the left child of the Minus node, and the second would be the value returned by the
right child.

12 Tree Parsing

Execution of IntRR_sub might allocate a register to hold the result of the subtraction
and create a PTG node representing the sequence consisting of the PTG nodes passed to it
as operands followed by the assembly language instruction that computes the difference of
two integer values in registers and leaves the result in a register. IntRR_sub would return
a type-reg structure, which would become the value of the IntReg nonterminal on the
left-hand side of the rule.

Each nonterminal is associated with a function whose name is TP_ followed by the name
of the nonterminal. This function takes as its only argument a tree (of type TPNode,
see Section 1.3 [Node Construction Functions|, page 3), and returns a value of the type
associated with the nonterminal. Whenever one of these functions is applied to the root
of a tree, it parses that tree. The parse finds the cheapest derivation of the function’s
nonterminal at the root of the tree. All of the actions implied by the derivation are executed,
and the result of the function is the result delivered by the action executed at the root of the
tree. The only guarantee one can make about the order in which the actions are executed
is that it respects the data flow constraints implied by the function applications.

A specification with all of the rules described so far has only two nonterminals (IntReg
and F1tReg). The translator will generate two parsing functions that can be applied to the
root of a tree:

reg TP_IntReg (T'PNode tree)
A derivation for the tree rooted in tree in which the root is interpreted as an IntReg
will be sought. If such a derivation is possible, the actions associated with the steps for
the cheapest will be executed. The result of the action associated with the derivation
step at the root will be returned. Otherwise the program will terminate abnormally.

reg TP_FltReg (TPNode tree)
A derivation for the tree rooted in tree in which the root is interpreted as a FltReg
will be sought. If such a derivation is possible, the actions associated with the steps for
the cheapest will be executed. The result of the action associated with the derivation
step at the root will be returned. Otherwise the program will terminate abnormally.

The program will terminate abnormally when a requested derivation is not possible.
This condition always arises from a design fault; either the patterns are incomplete, or the
tree to be parsed is malformed.

3.2 Implementing Actions

An action is a function application, and the name of the action is the function to be invoked.
The rule with which the action is associated determines the signature of the function: Recall
that the arguments of the function are the nonterminals and attributes appearing on the
right-hand side of the associated rule, in order from left to right. The result of the function
becomes the value of the nonterminal appearing on the left-hand side of the associated rule.
Each nonterminal and attribute has a fixed type.

Function application can be implemented either by calling a macro or by invoking a
routine. If the action requires a routine invocation, and the signature of the routine to be
invoked matches the signature determined by the rule, then the routine name can be used
directly as the action. Often, however, there is a mismatch between the signatures. In

Chapter 3: Actions Carried Out During Parsing 13

that case, the action can be made the name of a macro that rearranges arguments, inserts
constants, or does whatever else is needed to correct the mismatch.

3.3 Commutative Actions

Many computers have instruction sets that are asymmetric in their treatment of operands.
For example, a machine with two-operand instructions may allow only the second of these
operands to be a literal value. If two values in registers are being added, the “add register”
instruction is used, but if a literal value were being added to a value in a register the “add
immediate” instruction would be necessary. One rule characterizing an integer addition
operation for such a machine, with an action to generate the “add immediate” instruction,
might be the following:

IntReg ::= Plus(IntReg,IntLit) : IntRI_add
(Here the nonterminal IntLit represents the interpretation “a literal integer”.)
Notice that the children of the P1lus node in this rule have different interpretations; this

rule cannot be used in a derivation that interprets the left child of the Plus node as an
IntLit and the right child as an IntReg.

Because addition is commutative, however, it is possible to interchange the children of
the P1lus node without changing the resulting value. Therefore if a derivation interprets the
left child of the Plus node as an IntLit and the right child as an IntReg, the tree parser
should be able to simply invoke the IntRI_add action with the two operands reversed.

This possibility is indicated by using : : instead of : between the rule and its associated
action:

IntReg ::= Plus(IntReg,IntLit) :: IntRI_add

15

4 Summary of the Specification Language

The phrase structure of the specification language is described by the following ambiguous
grammar

Source: (Include / Declaration / Rule)+ .

Declaration: (Nonterm // ’,’) ’:’ Type ’;’
Nonterm: Identifier .
Type: Identifier .

Rule:
Nonterm ’::=’ Node (>:> / ?::?) Action [’COST’ Integer] ’;’ /
Nonterm ’::=’ Nonterm ’:° Action [’COST’ Integer] ’;’ /
Nonterm ’::=’ Fragment ’:’ Action [’COST’ Integer] ’;°

Action: Identifier .

Node:

Terminal /

Terminal ’>(’ Nonterm [’,’ Nonterm] ’)’ /

Terminal ’>(’ (Type // ’,’) *)’ /

Terminal ’(’ Nonterm [’,’ Nonterm] ’,’ (Type // ’,’) ’)’
Terminal: Identifier .

Fragment: Terminal ’(’ Child [’,’ Child] ’)’
Child: Nonterm / Fragment

Declarations and rules are the main components of a specification. Includes are simply
names of files that are needed to define the identifiers representing types and actions.

An Include is a sequence of characters delimited by quotation marks ("). It is used
unchanged in an #include directive output by the specification language translator. Only
one #include directive is output for each distinct Include, regardless of how many times
that Include appears in the specification.

An Identifier is a sequence of letters and digits, the first of which is a letter. Asin C,
the underscore (_) is considered a letter.

4.1 Declarations

Each nonterminal symbol must be declared, stating the type of the value associated with
it:

Declaration: (Nonterm // ’,’) ’:’ Type ’;’

Nonterm: Identifier .

Type: Identifier .

Types are always represented by identifiers. If the type is a C basic type, no further
declaration is necessary. Other types must be defined by a typedef construct that appears
in some file named by an Include (see Chapter 4 [Summary of the Specification Language],
page 15).

16 Tree Parsing

Here is a set of declarations that is appropriate for the examples given earlier in this
document:
IntLit: int;
IntReg, FltReg: reg; '"mydefs.h"
Because int is a C basic type, no further information is necessary. reg, on the other

hand, is declared by a typedef construct that appears in file mydefs.h. Thus the Include
‘“"‘mydefs.h"’ is used to provide access to that information.

4.2 Rules

As discussed earlier, there are three kinds of rules: node rules (see Section 2.1 [Rules
Describing Tree Nodes]|, page 5), chain rules (see Section 2.2 [Chain Rules|, page 7), and
fragment rules (see Section 2.3 [Rules Describing Tree Fragments|, page 8):

Rule:
Nonterm ’::=’ Node (?:2> / ?::?) Action [’COST’ Integer] ’;’ /
Nonterm ’::=’ Nonterm ’:’ Action [’COST’ Integer] ’;’ /
Nonterm ’::=’ Fragment ’:’ Action [’COST’ Integer] ’;°

Action: Identifier .

Each rule has an associated action and an optional cost (which defaults to 1 if not
specified). The action is defined by an identifier, which must be defined in the file described
by one of the Include components of the specification. That definition might be an extern
statement or a #define directive (see Section 3.2 [Implementing Actions|, page 12). The
signature of the action is determined by the type of the left-hand-side Nonterm and the
right-hand side as discussed above (see Section 3.1 [Actions and Values|, page 11).

A node rule describes a single, possibly decorated, node of the tree being parsed (see
Section 2.1 [Rules Describing Tree Nodes|, page 5):

Node:

Terminal /

Terminal ’>(’ Nonterm [’,’ Nonterm] ’)’ /

Terminal ’>(° (Type // ’,’) ’)’ /

Terminal ’(’> Nonterm [’,’ Nonterm] ’,’ (Type // ’,’) ’)’
Terminal: Identifier .

Terminal is the symbol of the ranked alphabet that is represented by the node. The
Node must have k Nonterm children if Terminal has arity k.

Each Terminal is also associated with a specific set (possibly empty) of attributes. There
is no limit to the number or types of the attributes decorating a node. Each attribute is
denoted by a Type, which must be either a C basic type or an identifier defined by a typedef
construct that appears in some file named by an Include (see Chapter 4 [Summary of the
Specification Language|, page 15).

The :: marker distinguishes a commutative node (see Section 3.3 [Commutative Ac-
tions], page 13). This node must have two children, and those children must be distinct
nonterminals. A commutative node rule may have arbitrary decorations.

A fragment rule describes a fragment consisting of two or more adjacent nodes:
Fragment: Terminal ’(’ Child [’,’ Child] ’)’
Child: Nonterm / Fragment

Chapter 4: Summary of the Specification Language 17

Nodes participating in fragments may not be decorated. There is no limit on the size of
a fragment.

19

5 Predefined Entities

TP generates a C module consisting of an interface file tp_gen.h and an implementation
file tp_gen.c. The interface file exports definitions for the following identifiers:

TPNode the pointer type for internal representations of tree nodes
TPNULL a pointer of type TPNode representing no tree

TPNull() a macro without parameters that yields TPNULL, to be used where a function
notation is needed (as in WITH clauses of LIDO’s CONSTITUENTS construct)

Index

A

ACTIOM ..ottt 11, 16
actionmacro.........oooiiiiiiiiiiiiiiiiii 12
action routine.............. ...l 12
action signature.................ooiiiinan. 11, 12
arithmetic expressions........................ 1
ATAEY . 1
attribute types.......... ool 11
attributes.......... oo 1, 2, 16

C

chainrule i 7
comma eXpression............. ..ol 2
commutativity............ ...l 13, 16
conditional expression..................... 2,8
construction function................. 3
COSE ittt 5, 16

declaration........ccoviiiiiniiiniiin. 15

E

exported identifiers......................... 19

F

function, node construction.................. 3

I

identifier........ i 15
implementation.............. 12
INCIUde . oot e 15
interface file......... ...t 19

21

NOAE . ettt 16
node construction function................... 3
nonterminal 5
nonterminal types, 11

P

phrase structureo, 15
Predefined Entities.......................... 19

R

T

terminal ool 16
TP_O_DefTableKey 3
TP_O_int ... 3
TP L 3
TP 2. 3
TP_FLEREE oo 12
tp_gen.h 19
TP_INtREg ...\ 12
TPNode.........ooiiiii 19
TPNull.. ... 19
TPNULL. ..ot 19
tree fragment............l 8
treemode.........o 5
typedef ... 15
types, attributeo L 11

types, nonterminal 11

	1 The Tree To Be Parsed
	Tree Structure
	Decorating Nodes
	Node Construction Functions

	2 The Tree Patterns
	Rules Describing Tree Nodes
	Chain Rules
	Rules Describing Tree Fragments

	3 Actions Carried Out During Parsing
	Actions and Values
	Implementing Actions
	Commutative Actions

	4 Summary of the Specification Language
	Declarations
	Rules

	5 Predefined Entities
	Index

