Tutorial for Name Analysis
Using ScopeGraphs

Uwe Kastens

University of Paderborn
D-33098 Paderborn
Germany

W. M. Waite

University of Colorado
Boulder, CO 80309-0425
USA

Table of Contents

1 Kernel Language 1
1.1 Text structure. e 1
EXeTCISES « v v 3

1.2 Tree Structure.o e 3
ExXercises .. oo 6

1.3 Basic name analysisoo i i 7
3 T 11

1.4 Error reporting.ottt e 12
EXerciSes . ..o 13

1.5 Procedures...... ..o 14
EXerCISeS . . ot 15

2 Classes........ooiiiii 19
BT CISES . o ot 20
2.1 Qualified nameso 20
EXerciSes . ..ot 23

2.2 Inheritance. ... 24
EXerCISES . . ot 28

3 Libraries........... 31
BT CISES o o ot 33
3.1 Single import. ..o 33
EXerCiSes . . oot 38

3.2 Importondemandt 38
EXercises . .o 42

4 Interaction with Type Analysis............... 43
4.1 Connect to the Typing module............ 44
4.2 Type-qualified entity names............., 47
EXerCISES . o ottt 49

4.3 Type-qualified edge names......... ..., 50
EXercises . ..o 52

5 Multiple Scope Graphs 55
5.1 Reusing identifiers in the same scope..................oooia.. 55
3 < 62

5.2 Constructs obeying different scope rules........................ 62

B XerCISes . oo 64

ii

6 Selecting Acceptable Bindings 65
6.1 AcCess TULeS . ..ot 66
EXerCISes . oo 73

6.2 Position control 73
EXerCISeS . oo 76

7 Predefined Identifiers.......................... 77
EXerCISeS . ot 79

1 Kernel Language

This chapter considers the name analysis problem for a very simple subset of a language
called NameLan. We begin with specifications of the phrase structure and basic symbols.
A processor built from these specifications will accept a text in NameLan and build a tree.
These specifications can then be augmented by others, enhancing that processor to make it
solve the subset’s name analysis problem. The sample text that we will analyze is:

machar.nl[1]==
int radix;
{ float a = 1.0;
while (((a + 1.0) - a) - 1.0 == 0.0)
a=a+ a;

float b = 1.0;
while ((a + b) - a == 0.0)
b=D>b+ b;

radix = (a + b) - a;
}

This macro is attached to a non-product file.

This program determines the radix of the floating point representation of the machine
on which it runs, and stores that value in a global variable. NameLan does not require
fully-parenthesized expressions, but parentheses are needed here to guarantee the order of
evaluation within the expressions. (Optimizers do not generally violate the integrity of
parenthesized expressions.)

1.1 Text structure

Text is considered to be made up of a sequence of comments and basic symbols. Comments
are character sequences to be ignored, while basic symbols are character sequences that
correspond to terminal symbols of the grammar describing the phrase structure of the text.
Basic symbols can be grouped according to the information they carry:

Delimiter A marker that serves to establish the structure of the source text. (Examples:
while and (.)

Denotation
A representation of a source language entity. Different occurrences of the same
denotation all represent the same entity. (Examples: 0.0 and int.)

Identifier A name for some entity. Different occurrences of the same identifier may name
different entities. (Examples: radix and a.)

Name analysis is concerned with establishing the entity named by each identifier in the text.

Since basic symbols correspond to terminal symbols of the grammar describing a lan-
guage’s phrase structure, it is generally simplest to start by specifying that grammar (see
Section “Context-Free Grammars and Parsing” in Syntactic Analysis). The terminal sym-
bols are then precisely the symbols that do not occur on the left-hand side of any grammar
rule.

2 Tutorial for Name Analysis Using ScopeGraphs

The concrete syntax of a language is a specification of the phrase structure of a program
written in that language. Here is a concrete syntax for the NameLan subset of interest here:

Phrase structure[2]|==

Program: Declaration* Block.
Declaration: VarDecl.

Block: >{’> DeclStmt* ’}’.
DeclStmt: VarDecl / Statement.
VarDecl: Type VarDefs ’;’.
VarDefs: VarDef // ’,°
VarDef: Ident [’=’ Expr].
Type: ’int’ / ’float’
Statement: Name ’=’ Expr ’;’ /

’if’ Expr Statement $’else’ /
’if’ Expr Statement ’else’ Statement /
’while’ ’>(’ Expr ’)’ Statement /

Block.
Expr: AExpr [Relop AExpr]
AExpr: [Addop] Term / AExpr Addop Term .
Term: Factor / Term Mulop Factor .
Factor: Name / Integer / Real / ’(° Expr ’)’
Relop: 10 / rg=" / pR——] 1= / ’>=> / 1>
Addop: S VAR
Mulop: S VERVAN
Name: Ident.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.
(See Section “The effect of a $-modification” in Syntactic Analysis, for an explanation of
the if statement definition.)

NameLan.con|[3|==

Phrase structure([2]
This macro is attached to a product file.

Notice that many of the terminal symbols of this grammar are given literally (for ex-
ample, >=>, ’;? and ’if’). Clearly, these literal terminals need no further specification.
We are left with only three terminals (and the comment) whose form the grammar leaves
unspecified:

NameLan.gla[4]==

Ident: C_IDENTIFIER

Chapter 1: Kernel Language 3

Integer: C_INTEGER
Real: C_FLOAT
C_COMMENT

This macro is attached to a product file.

This specification indicates that the formats of these NameLan terminal symbols and com-
ments are identical to those of their counterparts in C (see Lexical Analysis).

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/Kernel > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Recall that we suggested that you begin by specifying the grammar that describes a
language’s phrase structure. File NameLan.con is such a grammar specification. Eli
can’t generate a processor from NameLan.con because that file does not specify the
structure of the non-literal terminals. Nevertheless, ask Eli to do so and examine the
resulting errors:

-> NamelLan.con :exe :error >
Compare the error report with file NameLan.gla. How do they differ, and why?

2. Eli is able to generate a processor from the two files NameLan.con and NameLan.gla
together. In order to generate a processor from a number of specification files, Eli needs
a single file of type specs listing those specifications:

Text.specs[5]==
NameLan.con

NameLan.gla
This macro is attached to a product file.

Ask Eli to generate a processor from Text.specs and save the executable for that
processor in the current directory:

-> Text.specs :exe > kern
Apply kern to machar.nl:
-> !./kern machar.nl
(You can also exit Eli and run kern as you would any program.)
a. Why is there no output?

b. Delete the second line of machar.nl and again apply kern to it. Is the output
what you expected?

c. Briefly explain what your generated processor is actually doing.

1.2 Tree Structure

NameLan.con is the concrete syntax of our NameLan subset. It describes all of the phrases
that can be used to construct a program like machar.nl. The processor generated from
NameLan.specs in the last section verifies that a text file represents a syntactically-correct
program in the NameLan subset.

4 Tutorial for Name Analysis Using ScopeGraphs

An Eli-generated processor represents a program internally by a tree, and carries out
tasks like name analysis by computing the values of attributes attached to the nodes of
the tree (see LIDO — Computation in Trees). The abstract syntax of a language describes
all of the possible trees that a generated processor could build to represent syntactically-
correct programs in that language. Eli uses LIDO notation to define the abstract syntax of
a language (see Section “top” in LIDO — Reference Manual).

Eli can deduce an abstract syntax from a concrete syntax, but the trees described by
that abstract syntax might not be the best ones for subsequent analysis. The rules de-
scribing expressions and operators in NameLan.con provide an excellent example. They
implement the operator precedence and association rules of NameLan, and guarantee that
the phrase structure reflects the relationship between operators and operands (see Section
“Using structure to convey meaning” in Syntactic Analysis). Those rules determine the
structure of the tree to be built.

Consider the expression in the second while statement of machar.nl:
(a+Db) -a==0.0

According to the grammar, this is an Expr phrase with the following structure:
AExpr Relop AExpr

The interpretation of this structure is that the equality operator == compares the subex-
pression (a + b) - a with the number 0.0. It reflects the fact that addition and subtraction
operations should be carried out before comparison operations, i.e. that they should have
higher precedence (see Section “Operator precedence” in Syntactic Analysis). NameLan. con
lists groups of operators in order of increasing precedence. This program text would there-
fore be represented internally by a tree with three subtrees: one representing (a + b) - a,
one representing ==, and one representing 0.0.

The parentheses in the expression to the left of == indicate that a + b is the left operand of
the subtraction. Suppose that those parentheses were omitted. According to the grammar,
a + b - ais an AExpr phrase with the structure:

AExpr Addop Term
Thus the structure is the same as that of the parenthesized form.

The + and - operators have the same precedence; NameLan.con implements the rule
that these operators associate to the left (see Section “Operator associativity” in Syntactic
Analysis).

There is no need to retain the distinction between different levels of expression (e.g.
AExpr and Term), or between different precedences of operators (e.g. Relop and Addop), in a
tree representing machar.nl because the information they provided is already built into the
tree structure. We therefore map all expression symbols to Expr and all operator symbols
to Oper (see Section “The Relationship Between Phrases and Tree Nodes” in Syntactic
Analysis).

Mappings from concrete symbols to abstract symbols|6]|==

MAPSYM
Expr ::= AExpr Term Factor.
Oper ::= Relop Addop Mulop.

This macro is defined in definitions 6.
This macro is invoked in definition 7.

Chapter 1: Kernel Language 5

NameLan.map[7]==

Mappings from concrete symbols to abstract symbols[6€]

This macro is attached to a product file.

NameLan .map removes the distinction between symbols of the concrete syntax. We also
need to be able to introduce distinctions where a single symbol of the concrete syntax
plays different roles in different contexts. For example, identifiers are always represented
by the concrete symbol Ident. But two identifiers can require very different computations
depending on the context in which they occur. Because computations are associated with
symbols in the tree, we need different abstract syntax symbols to represent different identifier
occurrences.

We recommend that, wherever possible, abstract syntax symbols needed to distinguish
identifier contexts not be added to the concrete syntax (see Section “Representation of
identifiers” in Name Analysis Reference Manual). The reason for this recommendation is
that the parser often does not have sufficient contextual information to recognize the phrase,
but that information is available when the tree is being built.

The abstract syntax derived from Text.specs contains the following rule:

RULE rule_024:

Name ::= Ident

END;
In order to distinguish the identifier context of a simple name, let’s add the symbol
SimpleName to the abstract syntax. This can be done by writing two explicit LIDO rules:

Abstract syntax of identifiers[8]==
RULE: Name ::= SimpleName END;
RULE: SimpleName ::= Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.

When the parser reports that it has recognized the phrase correponding to rule_024, the
tree builder will automatically build two tree nodes described by these two new rules instead
of building a node described by rule_024.

We use a similar strategy to distinguish the two contexts in which an identifier is declared:

Abstract syntax of identifiers[9]==

RULE: VarDef = VarDefName END;
RULE: VarDef = VarDefName ’=’ Expr END;
RULE: VarDefName = Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.

This macro is invoked in definition 10.
As we extend NameLan to demonstrate more complex name analysis issues, we will need
to distinguish other identifier contexts.

Abstract syntax tree[10]==

Abstract syntax of identifiers[8]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

6 Tutorial for Name Analysis Using ScopeGraphs

NameLan.lido[11]==
Abstract syntax tree[10]
This macro is attached to a product file.

We can now specify a processor that will take account of these mappings when deducing
the abstract syntax, and produce a simpler tree from machar.nl:

Specification files[12]==

NameLan.con
NameLan.gla
NameLan.map
NameLan.lido

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

NameLan.specs[13]==

Specification files[12]

This macro is attached to a product file.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/Tree > .
None of these files will have write permission in your current directory.

1. Extract the description of the abstract syntax deduced directly from the concrete syntax
for the kernel language and open it in your editor:

-> Text.specs :absyntax <

Using these abstract syntax rules, draw the tree representing the following expression
from machar.nl:

(a+b) -a==0.0

Label each node with the rule name, and indicate any additional information contained
in a leaf. To get you started, the root is a rule_011 node and its second child is a
rule_028 node. One of the leaves is a rule_015 node whose additional information is
the internal representation of the denotation 0.0.

2. Extract the description of the mapped abstract syntax for the kernel language and
open it in your editor:

-> NamelLan.specs :absyntax <
a. Draw the tree for (a + b) - a == 0.0 using these abstract syntax rules.

b. Does this tree provide any less descriptive power than the tree drawn from the
original abstract syntax? Explain briefly.

c. Search for Expr ::= and Oper ::=. Verify that the nodes of the tree described by
these rules can represent any possible expression in the language.

Chapter 1: Kernel Language 7

1.3 Basic name analysis

When you read machar.nl, your programming experience tells you that that it is manipu-
lating three variables. Two of these variables are named a and b, and are used to do floating
point computations that explore the properties of the number representation. The third
variable, named radizx, is set to an integer value that is the radix of the representation.

In order to formalize this intuition, the designer of NameLan makes use of four con-
cepts that relate identifiers to the entities they name (see Section “Fundamentals of Name
Analysis” in Name Analysis Reference Manual).

e A binding is a pair consisting of an identifier ‘i’ and an entity ‘k’.

e A scope is a contiguous sequence of program text associated with a set of bindings. We
say that a binding in the set has the scope.

e A defining occurrence is an occurrence of an identifier ‘i’ that could legally be the only
occurrence of that identifier in the program. A binding ‘(i,k)’ is associated with each
defining occurrence.

Language rules specify the scope of a defining occurrence, and thus a scope of
the binding associated with that defining occurrence. Other language rules may
specify further scopes of a binding that are not in the context of the defining
occurrence.

e An applied occurrence is an occurrence of an identifier ‘i’ that is legal only if it identifies
a binding ‘(i,k)’ in some set associated with its context.

Language rules specify the set(s) in which an applied occurrence may identify
bindings.

As language designers, we have decided to specify the rules for the kernel language as
follows:

e The scope of a defining occurrence VarDefName is the smallest enclosing Block or
Program.

e An applied occurrence that is a SimpleName ‘i’ identifies the binding ‘(i,k)’ having
the smallest scope encompassing ‘i’.

A binding ‘(radix,k)’, where ‘k’ is the integer variable entity named by radix, is
associated with the defining occurrence of radix in the first line of machar.nl. According
to the first rule, the scope of that defining occurrence (and hence the scope of ‘(radix,k)’)
is the Program phrase — the complete program text. Since the applied occurrence of radix in
line 10 lies within that scope, it identifies ‘(radix,k)’ by the second rule. We can therefore
conclude that this applied occurrence names the integer variable named by the defining
occurrence of radix in the first line of machar.nl. Similar statements can be made about
the variables a and b, the scope of whose defining occurrences is the Block phrase.

Consider the following trivial program:
float x = 0;
{int x; x = 2;}
The scope of the defining occurrence of x on line 1 is the Program phrase, while that of the

defining occurrence of x on line 2 is the Block phrase making up line 2. Suppose that the
binding associated with the defining occurrence on line 1 is ‘(x,kf)’ and the one associated

8 Tutorial for Name Analysis Using ScopeGraphs

with the defining occurrence on line 2 is ‘(x,ki)’. Which of these two bindings will the
applied occurrence of x on line 2 identify?

Both of the scopes encompass the applied occurrence, but ‘(x,ki)’ has the smaller
scope. Therefore the applied occurrence will identify ‘(x,ki)’. The term usually used for
this effect is hiding. We say that the binding in the Block phrase hides any binding for the
same identifier in a surrounding context.

Name analysis is a computation carried out on the tree that is the internal represen-
tation of the program being analyzed (see Section “Fundamentals of Name Analysis” in
Name Analysis Reference Manual). That computation is specified in terms of the abstract
syntax, and takes the form of assignments of values to attributes of tree nodes (see Section
“Computations” in LIDO - Reference Manual). The goal of the computation is to determine
the entities named by the program’s identifiers, based on the concepts and language rules
discussed above.

Defining occurrences, applied occurrences, and scopes are concepts related to the pro-
gram text; how are these concepts represented in the tree? Each identifier occurrence is a
single basic symbol in the text, and is represented by a leaf of the tree. A scope, on the
other hand, extends over some region of the text. The developer needs to map each such
text region to an abstract syntax subtree encompassing that region. We call such a subtree
a range; several scopes may map into the same range. A scope is represented by the root
node of its range.

For example, consider the defining occurrence radix in the first line of machar.nl.
According to the scope rules of the kernel language, the scope of that defining occurrence
is the Program phrase. The only abstract syntax subtree encompassing that scope is the
entire tree, rooted in the Program node. We therefore conclude that the scope of the defining
occurrence radix is represented by the Program node.

Applying similar reasoning to the defining occurrence of a in machar.nl, we see that its
scope is encompassed both by a Block subtree and by the Program tree. By our definition,
either of the Program node or the Block node could be chosen to represent the scope of the
defining occurrence a. The developer should choose the range that reflects the semantics of
the language, and will simplify the name analysis computations. In the case of the kernel
language, the scope of a defining occurrence VarDefName is the smallest enclosing Block or
Program phrase. Therefore the developer should choose the Block node to represent the
scope of a. (For a more complex situation, see Section 6.2 [Position control|, page 73.)

Specific identifiers are character sequences in an input text, and are represented inter-
nally by integer values (see Section “Character String Storage” in The Eli Library). Iden-
tifiers with the same spelling are represented by the same integer (see Section “Available
Processors” in Lexical Analysis).

Conventionally we use the attribute Sym to hold the internal representation of an iden-
tifier. To cut down on the number of attribute declarations, we use an attribute name
specification to specify that all attributes named Sym have type int (see Section “Types
and Classes of Attributes” in LIDO Reference Manual). That allows us to use the attribute
name Sym without having to write an individual declaration for each symbol to which it is
attached:

Attribute representing an identifier[14]==
ATTR Sym: int;

Chapter 1: Kernel Language 9

This macro is invoked in definition 18.

An entity is represented internally by a definition table key, of type DefTableKey (see
Section “How to create and use definition table keys” in Definition Table). Definition table
keys must be passed around the tree and be stored as attributes at many different nodes,
and we conventionally use the attribute name Key for this purpose:

Attribute referencing an entity[15]==
ATTR Key: DefTableKey;

This macro is invoked in definition 18.

Name analysis determines a value of the Key attribute for each identifier occurrence in
the program.

The value of the Key attribute of a defining occurrence is known in the context of that
defining occurrence. For example, the fact that radix names a distinct program entity is
known at the defining occurrence because the context is a declaration. A DefTableKey
value representing that distinct entity can therefore be assigned to the Key attribute of the
corresponding tree node, without regard to any other computations (see Section “Defining
Occurrences” in Name Analysis Reference Manual). The properties of that definition table
key (e.g. the fact that the entity is an integer variable) depend on other computations, but
the key itself does not (see Property Definition Language).

The value of the Key attribute of an applied occurrence is determined by identifying
a binding of that applied occurrence. When the applied occurrence is a simple name, it
identifies the binding whose scope was mapped to the smallest range containing that applied
occurrence.

Scope rules determining the relationships between identifiers and entities follow patterns
that do not vary significantly among programming languages, and standard attribute com-
putations have therefore been developed to implement name analysis. Eli has packaged
those computations in a specification module (see Introduction of specification modules).
The developer can obtain them by instantiating that module:

Specification files[16]==
$/Name/ScopeGraphs.gnrc :inst
This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

An Eli specification module provides computational roles: constellations of attributes
and operations that are relevant for particular contexts in the tree. For example, a tree
node playing the role of a defining occurrence is given three attributes and a particular
set of computations to be carried out at specific visits to that node (see Section “Defining
Occurrences” in Name Analysis Reference Manual). Computational roles must be associated
with appropriate tree nodes so that the computations they describe can be carried out as
those nodes are visited during traversals of the tree. This is done by using LIDO inheritance
(see Section “Inheritance of Computations” in LIDO - Reference Manual).

The ScopeGraphs module provides three roles that can be used to implement basic name
analysis computations:

e RangeScope implements the range concept (see Section “The RangeScope role” in Name
Analysis Reference Manual).

10 Tutorial for Name Analysis Using ScopeGraphs

e IdDefScope implements the concept of a defining occurrence (see Section “Defining
Occurrences” in Name Analysis Reference Manual).

e GCSimpleName implements the concept of an applied occurrence that is a simple name
(see Section “Graph-complete search” in Name Analysis Reference Manual).

Our scope rule for the kernel language defines the scope of a VarDefName as the smallest
enclosing Block, which we have mapped into a range rooted in a Block node. The appro-
priate specifications associating the name analysis roles with symbols of the kernel language
abstract syntax are thus:

Tree nodes playing ScopeGraphs roles[17|==

SYMBOL Block INHERITS RangeScope END;
SYMBOL VarDefName INHERITS IdDefScope END;
SYMBOL SimpleName INHERITS GCSimpleName END;
This macro is invoked in definition 18.

The VarDefName rule also describes Program as a possible scope. Program is the symbol
at the root of the tree, which automatically inherits the RootScope role (see Section “The
RootScope role” in Name Analysis Reference Manual). RootScope combines the behavior
of RangeScope with attributes and operations that are specific to the root of the tree.
Therefore Program should not inherit RangeScope. We also recommend that no symbol
explicitly inherit RootScope.

The computations associated with the three roles use an internal data structure called
a scope graph (see Section “Fundamentals of Name Analysis” in Name Analysis Reference
Manual). Each scope graph node specifies a set of bindings; scope graph edges describe
search paths used to find a binding for a given identifier.

Any tree node that plays the RangeScope or RootScope role is the root node of a range,
and corresponds to a scope graph node. (There may also be scope graph nodes that do not
correspond to tree nodes.) The set of bindings specified by a scope node corresponding to
the root node of a range is exactly the set of bindings mapped to that range.

A basic understanding of the way in which the computations attached to the abstract
syntax tree by computational roles use the scope graph will help you to understand why we
do things in a certain way, and how to extend name analysis to more complex situations.
We will therefore briefly look at the name analysis of machar.nl.

A computation inherited by the root node of the tree from the RootScope role creates
a scope graph node for the Program range. Computations inherited from RangeScope by
the Block node of the tree also create a scope graph node, and use the tree structure to
determine that the newly-created node should be connected by a parent edge to the created
ancestor node (see Section “Scope graphs” in Name Analysis Reference Manual). Parent
edges represent the enclosure relation for ranges. The Block is enclosed by the Program in
machar.nl, so the parent edge is directed from the scope node being created (the tail of
the parent edge) to the created ancestor scope node (the tip of the parent edge).

Computations inherited from the IdDefScope role use the tree structure
to find the enclosing range of each VarDefName and specify the binding
(VarDefName.Sym,VarDefName.Key) at the scope node corresponding to that
range.

The search for a binding for the applied occurrence of radix in machar.nl begins in the
scope node corresponding to the smallest range containing that SimpleName (see Section

Chapter 1: Kernel Language 11

“The generic lookup” in Name Analysis Reference Manual). This scope node specifies two
bindings, for a and b, but no binding for radix. Because this scope node is the tail of
a parent edge, the search continues in the scope node that is the tip of that edge and is
successful.

The complete specification of a processor that does name analysis on the kernel language
requires the ScopeGraphs module instantiation, the concrete syntax and symbol mapping
for NameLan, and the LIDO file connecting the abstract syntax to the module:

Abstract syntaz tree[18]==

Attribute representing an identifier[14]
Attribute referencing an entity[15]
Tree nodes playing ScopeGraphs roles[17]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

A processor generated from this specification will build a tree and perform name analysis,
but it will not produce any output. For the purpose of this tutorial, however, we want
our processor to make the results of the name analysis visible. We want to be able to
see the relationships between applied and defining occurrences so that we can check our
understanding. Eli provides another module that we can instantiate for this purpose (see
Section “Name Analysis Testing” in Name Analysis Reference Manual).

Bindings.specs[19]==
NameLan.specs

$/Name/SGProof .gnrc +referto=Ident :inst

This macro is attached to a product file.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)Basic > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Extract the description of the abstract syntax on which name analysis is based, and
open it in your editor:

-> NamelLan.specs :absyntax <

a. Verify that the tree for machar.nl will contain nodes that have the GCSimpleName
role.

b. How can you distinguish rules that were deduced from the concrete syntax from
rules that were added explicitly?

2. Draw the scope graph that would be constructed for machar.nl. Use circles for the
nodes, and write an identifier in the circle if that identifier has a binding specified by
the node. Explain briefly how the generic lookup would use your scope graph to find
an appropriate binding for the occurrence of radix in the last line of machar.nl (see
Section “The generic lookup” in Name Analysis Reference Manual).

12 Tutorial for Name Analysis Using ScopeGraphs

3. Use Bindings.specs to generate a processor named bind that will show bindings for
applied occurrences, executable for that processor in the current directory:

-> Bindings.specs :exe > bind
Apply bind to machar.nl:
-> !./bind machar.nl
(You can also exit Eli and run bind as you would any program.)

a. Does the output indicate that the name analysis is correct according to the lan-
guage rules? Explain briefly.

b. Delete the variable declaration from the first line of machar.nl and again apply
bind to it. Is the output what you expected?

c. Duplicate the variable declaration in the first line of machar.nl and again apply
bind to it. Is the output what you expected?

1.4 Error reporting

If the first line were removed from machar.nl, the applied occurrence of radix in the last
line would not lie in the scope of any defining occurrence of radix. The scope rules of the
previous section do not define the result when an applied occurrence does not lie in the
scope of a defining occurrence of its identifier.

Recall that the search for the meaning of the applied occurrence of radix begins in the
scope node for the Block, and follows the parent edge to the scope node for the Program.
There is now no binding for radix in that node, and the node has no parent edge to follow.
At that point, the computation sets the attribute SimpleName.Key to the value NoKey (see
Section “How to create and use definition table keys” in Definition Table).

A NoKey result always indicates that the name analysis computation has been unable
to find a suitable binding for an applied occurrence. Therefore the ScopeGraphs module
provides a role, ChkIdUse, which can be inherited by an applied occurrence to provide an
error report when the entity is NoKey:

Report an undefined identifier[20]==
SYMBOL SimpleName INHERITS ChkIdUse END;

This macro is invoked in definition 22.
Now suppose that the first line of machar.nl were:
int radix; float radix;

Both defining occurrences of radix have the Program range. The scope rules of the previous
section yield an ambiguous result when several defining occurrences of the same identifier
have the same range: the assignment in the last line of machar.nl could be setting either
the integer or the floating point variable.

The ScopeGraphs module creates a new definition table key to represent the entity
named by the first defining occurrence the attribute computation encounters in a specific
range. (That defining occurrence may not be textually first; attribute computations are not
necessarily carried out in textual order.) Any subsequent defining occurrence of the same
identifier in that range will be represented by the same key.

For NameLan, we should report multiple defining occurrences bound to the same defi-
nition table key as an error. The ScopeGraphs module does not provide an error-reporting

Chapter 1: Kernel Language 13

role for this condition because there are a number of situations in which it is legal. However,
a simple computation based on the Unique role provided by the Eli module library allows
us to produce an appropriate report (see Section “Check for Unique Object Occurrences”
in Property Library). Since we will need to report multiply-defined identifiers in several
contexts, we wrap this computation in a role named MultDefChk that VarDefName and
other symbols can inherit:
Report a multiply-defined identifier[21]==
SYMBOL MultDefChk INHERITS Unique COMPUTE
IF(NOT(THIS.Unique),
message (
ERROR,
CatStrInd("Identifier is multiply defined: ", THIS.Sym),
0,
COORDREF)) ;
END;

SYMBOL VarDefName INHERITS MultDefChk END;

This macro is invoked in definition 22.
(See Section “Source Text Coordinates and Error Reporting” in The Eli Library, for an
explanation of the message routine.)

Combining these computations into a single specification that we add to those of the
previous section, and instantiating the Unique module, gives us:

Abstract syntaz tree[22]==

Report an undefined identifier[20]
Report a multiply-defined identifier[21]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Specification files[23]==
$/Prop/Unique.gnrc :inst
This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)Report >

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Ask Eli to generate a processor and save the executable for that processor in the current
directory:

-> Namelan.specs :exe > rept

14 Tutorial for Name Analysis Using ScopeGraphs

Apply rept to machar.nl.
a. Why is there no output?

b. Delete the variable declaration from the first line of machar.nl and again apply
rept to it. Is the output what you expected?

c. Duplicate the variable declaration in the first line of machar.nl and again apply
rept to it. Is the output what you expected?

1.5 Procedures

Suppose that we want to be able to define and invoke procedures in our simple language.
Here’s an example of a program that defines a procedure to compute the greatest common
divisor (ged) of two integers. It also defines a global variable, and sets that variable to the
ged of two specific values:

ged.nl[24]==

int gcd(int x, int y) {

while (x '= y) {
if x>y) x=x-17y;
else y =y - x;
}
return Xx;
}
int x;

{ x = gcd(9, 12); }

This macro is attached to a non-product file.

Our extension of the phrase structure reflects object-oriented terminology because we
will eventually make NameLan an object-oriented language:

Phrase structure[25]==

Declaration: MethodDecl.

MethodDecl: Type Ident MethodBody.

MethodBody: >(? Parameters ’)’ ’{’ DeclStmtx* ’}’.

Parameters: [Parameter // °,’ 1].

Parameter: Type Ident.

Type: ’void’.

Statement: Name ’(’ Arguments ’)’ ’;’ / ’return’ [Expr] ’;’.
Factor: Name ’(’ Arguments ’)’.

Arguments: [Expr // °,” 1.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

Chapter 1: Kernel Language 15

We need abstract syntax symbols to distinguish the two new identifier contexts found
in Method.con (see Section “Representation of identifiers” in Name Analysis Reference
Manual).

Abstract syntax of identifiers[26]|==

RULE: MethodDecl ::= Type MethodDefName MethodBody END;
RULE: MethodDefName = Ident END;
RULE: Parameter ::= Type ParamDefName END;
RULE: ParamDefName = Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.
Our extension of NameLan introduces new defining occurrences, applied occurrences,
and ranges. These changes require us to modify the scope rule for VarDefName from the
kernel language, and provide additional rules:

e The scope of a defining occurrence VarDefName is the smallest enclosing Block,
MethodBody, or Program.

e The scope of a defining occurrence MethodDefName is the smallest enclosing Program.

e The scope of a defining occurrence ParamDefName is the smallest enclosing
MethodBody.

This is the first section in which the exercises will ask you to create a specification file
on your own. You will need to add the names of such specification files to those of the files
supplied by the tutorial. We support that by adding the name of the file Solutions.specs
to the tutorial’s list of specification files:

Specification files[27]|==
Solutions.specs
This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Solutions.specs is not supplied by the tutorial, but by you. In the introdution to this
manual, we suggested that you create a directory containing an empty file Solutions.specs
before beginning the exercises. (If you decided to use a workbook, Solutions.specs should
contain the name of the workbook file.)

Solutions.specs is entirely under your control, as is your workbook if you use one.
When you need to create a specification to be used in generating a processor, simply add
its name to your Solutions.specs or define it in your workbook.

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)Procs >

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Consider the program gcd.nl.

a. Describe the four ranges. Where does each begin and end? What are the enclosure
relations?

16

Tutorial for Name Analysis Using ScopeGraphs

b. Identify the four defining occurrences. To which range does each belong?

c. Identify one applied occurrence that has a defining occurrence in the smallest range
containing that applied occurrence.

d. Identify one applied occurrence that does not have a defining occurrence in the
smallest range containing that applied occurrence,

Write LIDO rules that use inheritance to connect the grammar in NameLan.1lido to the
scope rules for the language. Will any symbols need to inherit MultDefChk? Explain
briefly.

The LIDO rules that connect the grammar in NameLan.lido to the scope rules for the
language constitute the first specification that you have created on your own. You need
to combine those rules with the specification developed in the tutorial to generate a
processor that analyzes NameLan procedures.

If you are using a workbook, define a FunnelWeb output file named Method.1lido con-
taining your LIDO rules in that workbook (see Section “Output Files” in FunnelWeb).

If you are not using a workbook, create a file named Method.lido containing your
LIDO rules and add the name Method.lido to your Solutions.specs file.

a. Could you have named your specification file Procs.lido? Explain briefly.
b. Could you have named your specification file Method.con? Explain briefly.

Use Bindings.specs to generate a processor named pl that will show bindings for
applied occurrences, and apply it to gcd.nl. Do you get the output you expected?
Explain briefly.

5. Draw the scope graph that was built by p1 for gcd.nl.

6. Apply pl to the file 1cl.nl, which declares a local variable x in the body of gcd:

lcl.nl[28]==
int gecd(int x, int y) {

while (x '= y) {
if x>y) x=x-1y;
else y =y - x;

}

return x;

int x;

}
int x;

{ x = gecd(9, 12); }

This macro is attached to a non-product file.
What is the effect of the local variable declaration? Briefly explain the output.

Open the file NameLan. con in your editor and change the definition of a MethodBody
to:

MethodBody: >(? Parameters ’)’ Block.
Use Bindings.specs to generate another processor named p2.

a. Apply p2 to gcd.nl. Briefly explain the output.

Chapter 1: Kernel Language 17

b. Apply p2 to 1cl.nl. Briefly explain why pl and p2 give different results.

c. The difference between pl and p2 represents a language design choice. Briefly
evaluate the two possibilities and state your reasons for preferring one over the
other.

19

2 Classes

A class is an entity that can encapsulate both storage and behavior. File random.nl contains
an example:

random.nl[29]==

class Random {
int state = 100001;

float ran() {
state = state * 125;
state = state - (state / 2796203) * 2796203;
return state / 2796203.0;

}
}
{ float p, q;
p = Random.ran();
q = Random.ran();
}

This macro is attached to a non-product file.

The behavior encapsulated by the class Random is the pseudo-random number generator
ran, and the storage state holds the internal state of that generator.

The general form of a NameLan class declaration is:

Phrase structure[30]==

Declaration: ClassDecl.

ClassDecl: ’class’ Ident Inheritance ClassBody.
Inheritance: Default.

Default: .

ClassBody: >{’ Declaration* ’}’.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

We need an abstract syntax symbol to distinguish the new identifier context found in
the ClassDecl (see Section “Representation of identifiers” in Name Analysis Reference
Manual). That identifier is the class name, so ClassDefName is a reasonable symbol for the
context:

Abstract syntazx of identifiers[31]==
RULE: ClassDecl ::= ’class’ ClassDefName Inheritance ClassBody END;

RULE: ClassDefName ::= Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.

Here are our new and modified scope rules for NameLan with classes:

e The scope of a defining occurrence VarDefName is the smallest enclosing Block,
MethodBody, ClassBody, or Program.

20 Tutorial for Name Analysis Using ScopeGraphs

e The scope of a defining occurrence MethodDefName is the smallest enclosing ClassBody
or Program.

e The scope of a defining occurrence ClassDefName is the smallest enclosing ClassBody
or Program.
The LIDO computations associated with these scope rules are similar to the ones asso-
ciated with methods, and we leave them to the reader as an exercise.
Classes introduce two new facilities, both of which affect name analysis:
e Qualified names may be used to access the class members.

e Classes may inherit members from other classes.

We will discuss these aspects in the next two sections.

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:
-> $elipkg/Name/LearnSG%Class > .
None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.
1. Consider the LIDO specifications necessary to implement the scope rules for classes.

a. Briefly explain why these scope rules do not require any changes in earlier specifi-
cations.

b. Create a specification that uses LIDO inheritance to implement name analysis for
classes, and ensure that the file containing it is named in Solutions.specs.

c. Use Bindings.specs to generate a processor named cl that will show bindings for
applied occurrences. Apply cl to machar.nl and gcd.nl. Do you get the output
you expected? Explain briefly.

2. Apply cl to random.nl. A syntax error is reported because cl does not understand
qualified names, but the name analysis continues with the dot removed from the in-
put text. The two applied occurrences Random and ran remain, and are considered
individually.

a. Is the treatment of each applied occurrence correct? Explain briefly.

b. Can you conclude that your specification is correct from the tests that you have
run? Explain briefly.

2.1 Qualified names

The defining occurrences state and ran in random.nl have the ClassBody of Random as
their scope. We introduce qualified names in order to be able to access such entities from
outside of the scope of their defining occurrences. Here is a specification of the phrase
structure of a qualified name:

Phrase structure[32]==

Name: Name ’.’ Ident.
This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,

Chapter 2: Classes 21

67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

The Name preceding the dot in a qualified name is called the qualifier, and the Ident is
an applied occurrence. We need an abstract syntax symbol to distinguish this new identifier
context (see Section “Representation of identifiers” in Name Analysis Reference Manual).
QualifiedId is a reasonable choice:

Abstract syntax of identifiers[33]|==

RULE: Name ::= Name ’.’ QualifiedId END;
RULE: QualifiedId ::= Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.

In order to formalize the intuitive meaning of a qualified name, we need one concept in
addition to the four discussed earlier (see Section “Basic Scope Rules” in Name analysis
according to scope rules).

e An entity may own a set of bindings called its members.
Language rules specify the set of members of an entity.
As language designers, we provide the following rules to define the members of a class

and the meaning of a qualified name:

e The members of a Class are the bindings having the ClassBody as a scope.

e An applied occurrence that is a QualifiedId ‘i’ in a Name ‘q.1i’ identifies the binding

‘(i,k)’ that is a member of the qualifier ‘q’.
Here is an analysis of the qualified name Random.ran of random.nl:

The applied occurrence Random names a class entity ‘e’.

The members of ‘e’ are the bindings having the ClassBody on lines 2-8 as a scope.

The binding ‘(ran,k)’ is a member of ‘e’.

- W oo

The applied occurrence ran in Random.ran identifies ‘(ran,k)’, and hence the name
Random.ran names the pseudo-random number generator.

The ownership relation between a class and its members is established by overriding the
default computation for the ClassBody.ScopeKey attribute (see Section “The RangeScope
role” in Name Analysis Reference Manual). Recall that ClassDefName.Key represents the
class entity:

Establish the ownership relation[34]==

RULE: ClassDecl ::= ’class’ ClassDefName Inheritance ClassBody COMPUTE
ClassBody.ScopeKey = ClassDefName.Key;
END;

This macro is invoked in definition 38.

A qualified identifier plays the GCQualName role (see Section “Graph-complete search”
in Name Analysis Reference Manual). That role provides three attributes used in name
analysis:

ScopeKey A DefTableKey-valued attribute that should be set by user computation to the
key of the entity named by the qualifier.

22 Tutorial for Name Analysis Using ScopeGraphs

Scope A NodeTuplePtr-valued attribute that will be set by a module computation to
the set of bindings owned by the entity given by the ScopeKey attribute (see
Section “Obtain a range from a qualifier” in Name Analysis Reference Man-
ual). If that entity does not own bindings, the computation will set the Scope
attribute to the value NoNodeTuple (see Section “Establishing the Structure of
a Scope Graph” in Name Analysis Reference Manual).

Key A DefTableKey-valued attribute that will be set by the following module com-
putation: Let ‘i’ be the qualified identifier. If the binding ‘(i,k)’ is an element
of the Scope set, then set Key to ‘k’. Otherwise set Key to NoKey.

In some contexts, the set of bindings owned by a qualifier may not be known until some
other computation has taken place (for an example, see Section 4.2 [Type-qualified names],
page 47). This means that we need to establish a precondition, ContextIsReady, for setting
the ScopeKey attribute. That precondition is true by default:

Qualified names lookup in complete graphs|[35]==

SYMBOL Name COMPUTE INH.ContextIsReady += "yes"; END;

This macro is defined in definitions 35 and 36.

This macro is invoked in definition 38.
By using an accumulating computation for the void attribute ContextIsReady, we can
allow any of several different computations to provide the precondition (see Section “Accu-
mulating Computations” in LIDO — Reference Manual).

If we use an attribute Name.Key to represent the entity named by a Name, then that

attribute can be computed by a left-to-right (bottom-up) induction:

Qualified names lookup in complete graphs[36]==
SYMBOL QualifiedId INHERITS GCQualName, ChkIdUse END;

RULE: Name ::= Name ’.’ QualifiedId COMPUTE
QualifiedId.ScopeKey = Name[2] .Key <- Name[1].ContextIsReady;
Name[1] .Key = QualifiedId.Key;

END;

RULE: Name ::= SimpleName COMPUTE
Name.Key = SimpleName.Key;

END;

This macro is defined in definitions 35 and 36.
This macro is invoked in definition 38.

At this point the abstract syntax contains four Name contexts in addition to the contexts
in the qualified name rules:

Statement ::= Name ’(’ Arguments ’)°’ ’;’
Expr ::= Name ’(° Arguments ’)’
Statement ::= Name ’=’ Expr ’;’

Expr ::= Name
In the first two contexts, Name is the name of a method, and in the last two it is the name of

a variable. It is likely that method names and variable names will need different attributes,
and that those attributes will differ from the attributes needed for qualified names. Since

Chapter 2: Classes 23

attributes are associated with symbols of the abstract syntax, it would be useful to add two
new symbols, MethName and ExprName, to the abstract syntax. The technique is identical
to the one we have been using to provide abstract syntax symbols to distinguish identifier
contexts (see Section “Basic Scope Rules” in Name analysis according to scope rules). We
replace Name in each of the four rules with the desired symbol and add rules defining each
of the new symbols as a Name:

Make contexts of complete names explicit[37]==

RULE: Statement ::= MethName ’(’ Arguments ’)’ ’;’ END;
RULE: Expr = MethName ’(’ Arguments ’)°’ END;
RULE: Statement ::= ExprName ’=’ Expr ’;°’ END;
RULE: Expr = ExprName END;
RULE: MethName ::= Name END;

RULE: ExprName Name END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.

We need to attach all of these rules to the abstract syntax tree:
Abstract syntax tree[38]==

Establish the ownership relation[34]
Qualified names lookup in complete graphs[35]
Make contexts of complete names explicit[37]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/Qual > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Use Bindings.specs to generate a processor named qual that will show bindings for
applied occurrences.

a. Apply qual to random.nl, machar.nl, and gcd.nl. Do you get the output you
expected? Explain briefly.

b. Explain briefly why QualifiedId inherits the role ChkIdUse.
2. In random.nl, change the two assignments of the program body to:

p = p.ran();
q = Random.ra();

a. Apply qual to the modified file. Did you get the result you expected?

b. The two error reports produced by qual when it is applied to the modified
random.nl are identical except for the undefined identifier. Do you think that
the two errors should be reported in the same way? Explain briefly.

24 Tutorial for Name Analysis Using ScopeGraphs

c. How could you use the value of QualifiedId.Scope to provide different reports
for the two errors in the modified random.nl? (See Section “Error Reporting” in
The Eli Library, for information on constructing error reports.)

2.2 Inheritance

The program gambler.nl implements a coin tossing class Coin and a class Dice that throws
an arbitrary number of dice. It uses inheritance to provide each class with its own random
number generator, without duplicating code:

gambler.nl[39]==

class Random {
int state = 100001;

float ran() {
state = state * 125;
state = state - (state / 2796203) * 2796203;
return state / 2796203.0;
}
}

class Coin extends Random {
int state = 0;

int toss() {
state = 2 * ran();
return state;
}
}

class Dice extends Random {
int state = 1;

int throw(int n) {
state = n;
return (6 * n) * ran() + 1;

}

{ int n; float p;

= Coin.toss();

= Dice.throw(5);
= Coin.state;

= Coin.ran();

= Dice.state;

= Dice.ran();

T BO B BB

}

This macro is attached to a non-product file.

Chapter 2: Classes 25

Both Coin and Dice use extends clauses to name Random as their direct superclass from
which they inherit. We use the following scope rule to define the effect of inheritance:

e Let ‘C’ be a class which inherits from its direct superclass ‘S’. Any binding having a

scope that is the ClassBody of ‘S’ also has a scope that is the ClassBody of ‘C’, unless
a defining occurrence of that binding’s identifier has the ClassBody of ‘C’ as its scope.

In gambler.nl, Coin has Random as its direct superclass. A binding for ran has the
ClassBody of Random as its scope, and no defining occurrence of ran has the ClassBody of
Coin as its scope. Therefore the binding for ran that has the ClassBody of Random as its
scope also has the ClassBody of Coin as its scope. This means that the applied occurrence
of ran in the second line of toss names the ran method of class Random.

In contrast, although a binding for state has the ClassBody of Random as its scope, there
is a defining occurrence of state having the ClassBody of Coin as its scope. Therefore the
applied occurrence of state in the second line of toss names the state variable of class
Coin.

Similar reasoning applies to class Dice: throw invokes the ran method of class Random
and assigns a value to the state variable of class Dice.

It is important to understand that both Coin and Dice actually have two integer vari-
ables. One of these variables is inherited from Random, and the other is defined locally. The
local definition has merely hidden the inherited integer variable in the body of the inheriting
class. Thus the programmer cannot access it directly within the inheriting class. The ran
method, however, accesses the state variable inherited from Random because that method
is defined in Random.

An inheritance relation is modeled in the scope graph by a path edge that is directed
from the node for a class to the node for its direct superclass (see Section “Scope graphs”
in Name Analysis Reference Manual). The tip of that path edge is given by a name, and
lookup operations are required to determine the node bound to that name. The lookup of
an edge tip name may depend on the existence of path edges in the scope graph, and it
contributes a path edge to the scope graph. In edges.nl, for example, the lookup for the
edge tip C.D contributes a path edge from node B to node D and depends on the existence
of the edge from node C to node A:

edges.nl[40]==
class X {
int k;

class A {
class D { int k; }
}

class B extends C.D {
int mQ) {
return k;
}
}

class C extends A { }

26 Tutorial for Name Analysis Using ScopeGraphs

{13

This macro is attached to a non-product file.

Our previous analysis of applied occurrences was based on the roles GCSimpleName and
GCQualName, which depend on a complete scope graph (see Section “Graph-complete search”
in Name Analysis Reference Manual). Clearly those roles will not be satisfactory for an-
alyzing the applied occurrences in a superclass name. The scope graph module provides
two analogous roles, WLSimpleName and WLQualName, that solve potential ordering conflicts
by using a worklist algorithm (see Section “Worklist search” in Name Analysis Reference
Manual). In order to take advantage of these roles, we define the phrase structure using
symbols that are different from those inheriting roles GCSimpleName and GCQualName:

Phrase structure[41]==

Inheritance: ’extends’ WLName.
WLName : Ident.
WLName : WLName ’.’ Ident.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

We need abstract syntax symbols to distinguish the two new identifier contexts found
in this rule (see Section “Representation of identifiers” in Name Analysis Reference Man-
ual). These contexts are analogous to SimpleName and QualifiedId, so we just add WL to
distinguish them:

Abstract syntax of identifiers[42]|==

RULE: WLName
RULE: SimpleWLName

SimpleWLName END;
Ident END;

RULE: WLName WLName ’.’ QualifiedWLId END;
RULE: QualifiedWLId Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.

The attribute computations for WLName are very similar to those for Name. They also
implement a left-to-right induction, but use FPItemPtr values instead of DefTableKey val-
ues. An FPItemPtr value represents a worklist computation, whereas a DefTableKey value
represents the result of such a computation. FPItemPtr values can be computed before
the worklist computation takes place because they specify what that computation is to do,
rather than the result it will obtain:

Specify worklist computations[43]==
ATTR FPItem: FPItemPtr;

SYMBOL SimpleWLName INHERITS WLSimpleName, ChkIdUse END;
SYMBOL QualifiedWLId INHERITS WLQualName, ChkIdUse END;

RULE: WLName ::= SimpleWLName COMPUTE

Chapter 2: Classes 27

WLName.FPItem = SimpleWLName.FPItem;
END;

RULE: WLName ::= WLName ’.’ QualifiedWLId COMPUTE
QualifiedWLId.DependsOn = WLName[2] .FPItem;
WLName [1] .FPItem = QualifiedWLId.FPItem;

END;

This macro is invoked in definition 47.
WLName appears in one abstract syntax rule beyond the two above:
RULE: Inheritance ::= ’extends’ WLName END;

As with Name in the last section, it is likely that the attributes needed for WLName in this
context will differ from those needed to handle qualified names. Therefore we provide a
new abstract syntax symbol, SuperClass, to distinguish this context:

Make contexts of complete names explicit|44]==

RULE: Inheritance ::= ’extends’ SuperClass END;
RULE: SuperClass ::= WLName END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.

Each WLName represents a distinct source language entity, and therefore it must have a
Key attribute:

Specify the Key attribute of a WLNamel45]==

RULE: WLName ::= SimpleWLName COMPUTE
WLName.Key = SimpleWLName.Key;

END;

RULE: WLName ::= WLName ’.’ QualifiedWLId COMPUTE
WLName[1] .Key = QualifiedWLId.Key;

END;

This macro is invoked in definition 47.

A path edge is established by the role WLCreateEdge (see Section “Worklist search”
in Name Analysis Reference Manual). The tailEnv attribute of the node inheriting
WLCreateEdge must be set to the NodeTuplePtr value representing the scope graph node
that is the tail of the edge. The tipFPItem attribute of the node inheriting WLCreateEdge
must be set to an FPItem value describing the computation of the tip of the edge. In our
grammar, SuperClass provides an appropriate context for WLCreateEdge:

Establish a path edge to a superclass[46]==
SYMBOL SuperClass INHERITS WLCreateEdge END;

RULE: SuperClass ::= WLName COMPUTE
SuperClass.tailEnv = INCLUDING Inheritance.SubClassEnv;
SuperClass.tipFPItem = WLName.FPItem;

END;

This macro is invoked in definition 47.

28 Tutorial for Name Analysis Using ScopeGraphs

This rule obtains the computation for the tip value from its child, but reaches up the tree
for the tail value. We leave the computation of Inheritance.SubClassEnv to the reader
as an exercise.

The NameLan inheritance scope rule says that an inherited binding hides bindings from
enclosing ranges. That means that the generic search algorithm must deal with inheritance
before it moves to an enclosing range (see Section “The generic lookup” in Name Analysis
Reference Manual).

The two fragments discussed in this section form the basis for implementing NameLan
inheritance:

Abstract syntax tree[AT]==

Specify worklist computations[43]
Specify the Key attribute of a WLName[45]
Establish a path edge to a superclass[46]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)Path > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. We have used the attribute Inheritance.SubClassEnv in the super class computa-
tions, but not specified how that attribute is set. Complete our specification, and
ensure that the file containing your material is named in Solutions.specs. It must
define the attribute Inheritance.SubClassEnv, and set its value to the NodeTuplePtr
value representing the range of the subclass (see Section “The RangeScope role” in
Name Analysis Reference Manual).

2. Use the scope rule for inheritance to decide the meaning of the applied occurrence of
k in the return statement of edges.nl.

3. Use Bindings.specs to generate a processor named path that will show bindings for
applied occurrences. Apply path to gambler.nl and edges.nl. Do you get the output
you expected? Explain briefly.

4. In edges.nl, change the symbol A in the extends clause for class C to k. Apply path
to the modified file. Do you get the output you expected? Explain briefly.

5. Consider the program wlblock.nl:
wlblock.nl[48]==
class CC { }

class C1 extends C2.BB {
class AA extends CC { }
}

Chapter 2: Classes 29

class C2 extends C1.AA {
class BB extends CC { }
}

{1}

This macro is attached to a non-product file.

a. Draw a scope graph showing the path edges for the superclass relations in
wlblock.nl.

b. Simulate the worklist computation for wlblock.nl. Do you see any problems?

c. Apply path to wlblock.nl. Did you get the result you expected?

31

3 Libraries

It’s rare that a program is developed by one person, without reference to the work of others.
Usually a programmer relies on a number of libraries for things like common computations
(e.g. sqrt) and input/output operations. Name analysis must have access to information
from libraries in order to establish bindings, but library code resides in separate files that
are not physically part of the user’s program.

There are many strategies for linking with library files, but all must support the basic
name analysis concepts. For the purposes of this tutorial, we will assume that the processor
input is a concatenation of source files. That concatenation will begin with the program
file, followed by any number of library files. Eli provides mechanisms for collecting source
files into a single input, but these are beyond the scope of this tutorial (see Section “Insert
a File into the Input Stream” in Tasks related to input processing).

Without use of additional facilities, a generated processor named proc could be invoked
on a sequence of files as follows:

cat pgmfile 1libfile 1libfile | ./proc

In the remainder of this tutorial, any examples illustrating libraries will be single files that
are the result of a concatenation.

We will extend NameLan by defining each library file as an entity called a package. File
‘pkg.nl’ illustrates this extension:

pkg.nl[49]==
{ float rate;
rate = verbs.fly.distance / insects.fly.legs;

}

package insects;

class ant { }

class fly { int legs; }
class bee { }

package verbs;

class run { }

class fly { int distance; }

This macro is attached to a non-product file.

Our original grammar’s root symbol was Program, which now describes only the first
part of a larger construct. To describe this larger construct, we need to extend the NameLan
concrete grammar above Program. In the process, we create a new root called Collection:

Phrase structure[50]==

Collection: Pgmfile Libfilex.

Pgmfile: Program.

Libfile: ’package’ Ident ’;’ PackageBody.
PackageBody: Declarationx.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.

32 Tutorial for Name Analysis Using ScopeGraphs

This macro is invoked in definition 3.

We need a new abstract syntax symbol to distinguish the new context for identifiers (see
Section “Representation of identifiers” in Name Analysis Reference Manual). The obvious
choice is PackageDefName:

Abstract syntazx of identifiers[5l]==

RULE: Libfile ::= ’package’ PackageDefName ’;’ PackageBody END;
RULE: PackageDefName ::= Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.

Here are our new and modified scope rules for NameLan with packages:

e The scope of a defining occurrence VarDefName is the smallest enclosing Block,
MethodBody, ClassBody, Program, or PackageBody.

e The scope of a defining occurrence MethodDefName is the smallest enclosing ClassBody,
Program, or PackageBody.

e The scope of a defining occurrence ClassDefName is the smallest enclosing ClassBody,
Program, or PackageBody.

e The scope of a defining occurrence PackageDefName is the enclosing Collection.

e The members of a Package are the bindings having the PackageBody as a scope.

Since Program is no longer the grammar root, it does not automatically inherit any role
and must explicitly inherit RangeScope:

Abstract syntax tree[52]==

SYMBOL Program INHERITS RangeScope END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

The LIDO implementation of the remaining roles is left as an exercise.

The ownership relation between a package and its members is established by overrid-
ing the default computation for the PackageBody.ScopeKey attribute (see Section “The
RangeScope role” in Name Analysis Reference Manual). Recall that PackageDefName.Key
represents the package entity:

Abstract syntax tree[53]==

RULE: Libfile ::= ’package’ PackageDefName ’;’ PackageBody COMPUTE
Libfile.Key = PackageDefName.Key;
END;

SYMBOL PackageBody COMPUTE INH.ScopeKey = INCLUDING Libfile.Key; END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Chapter 3: Libraries 33

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/Pack > .
None of these files will have write permission in your current directory.

1. Consider the LIDO specifications necessary to implement the scope rules for NameLan
with packages. Briefly explain why these scope rules do not require any changes in
earlier specifications.

2. Create a specification that uses LIDO inheritance to establish the roles implied by the
scope rules for PackageDefName and PackageBody, and ensure that the file containing
it is named in Solutions.specs.

3. Use Bindings.specs to generate a processor named pk that will show bindings for
applied occurrences. Apply pk to gambler.nl and pkg.nl. Do you get the output you
expected? Explain briefly.

3.1 Single import

A single import construct makes it possible to refer to a single entity defined in some package
by a simple name rather than a qualified name. For example, consider file single.nl:

single.nl[54|==

import P.D.m;
import Q.C.a;
{ a=142; mO; }

package Q;
import P.D;
class C extends D {
int a;
void m() {
a=b;
}
}

package P;
class D {
int b;
void m() {
b =0Q.C.a;
}
}

This macro is attached to a non-product file.

Single imports are used here to allow the program to refer to variable a of class Q.C and
method m of class P.D by simple names, and to allow package Q to refer to the class P.D by
a simple name.

34 Tutorial for Name Analysis Using ScopeGraphs

In order to implement single imports, we need to think about how a single import inter-
acts with the entities defined in the program or package. The nature of these interactions
is specified by the language designer, and there are several possibilities. We will describe
the decision that we made for NameLan, and show how that decision leads to a phrase
structure. Other decisions would lead to other structures.

As language designers, we consider imports to be a convenience for the programmer that
should not have any effect beyond the obvious one illustrated by single.nl. We therefore
do not want the scope of an imported binding to be the Program or a PackageBody. For
example, if the scope of the imported binding for D were the PackageBody of Q then that
binding would be available for another package to import from Q. That is an effect beyond
the obvious one.

If the scope of an imported binding were a phrase that encompassed the program or
package body, then that binding could be referred to by a simple name within the program
or package body unless it was hidden by a local defining occurrence. Although the PgmFile
(resp. LibFile) encompasses the program (resp. package body), those phrases also encom-
pass the import declarations. If we chose those phrases as scopes for the imported bindings,
import declarations could interfere with one another. That is another effect beyond the
obvious one.

We can avoid these undesired effects if we establish a structure for a program containing
import declarations that has an additional phrase encompassing the file body, but not the
import declarations. The desired structure can be defined by adding six productions to the
NameLan grammar:

Phrase structure[55]==

Pgmfile: ImportDecls PgmFileBody.

PgmFileBody: Program.

Libfile: ’package’ Ident ’;’ ImportDecls LibFileBody.
LibFileBody: PackageBody.

ImportDecls: ImportDecl+.

ImportDecl: ’import’ WLName ’;°.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.

This macro is invoked in definition 3.
The first and second productions introduce a new phrase PgmFileBody that encompasses
the normal Program phrase, and ensure that PgmFileBody is derived only if the PgmFile
contains import declarations. If a PgmFile contains no import declarations, that PgmFile
is derived directly to Program by the production defined earlier. The third and fourth
productions define the corresponding structure for a Libfile.

To see how this grammar addition has the desired effect, consider single.nl. Pgmfile
contains import declarations, and therefore the grammar derives a PgmFileBody phrase
encompassing the file’s Program phrase. Similarly, the first Libfile contains an import
declaration and a LibFileBody phrase encompassing its PackageBody phrase is derived.
On the other hand, the second Libfile has no import declarations. This means that none
of the added rules applies, and thus there is no additional phrase.

Chapter 3: Libraries 35

Notice that we have chosen to derive the name of the imported entity from WLName. Recall
that this phrase is used when there is a potential ordering conflict in analyzing names (see
Section 2.2 [Inheritance], page 24). In single.nl, the path edge between class C and class
D modeling the inheritance relation depends on the operand P.D of the import declaration
in package Q. Since path edges might depend on single imports, the imported name must
be processed by the worklist algorithm. We will use the rather generic “ImportName” to
characterize the imported entity because any declared entity might be imported:

Make contexts of complete names explicit[56]==
RULE: ImportDecl ::= ’import’ ImportName ’;’ END;
RULE: ImportName ::= WLName END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.

There is also a new context for PackageDefName:
Make contexts of complete names explicit[57]==

RULE: Libfile 1=
’package’ PackageDefName ’;’ ImportDecls LibFileBody
COMPUTE
Libfile.Key = PackageDefName.Key;
END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.

Here are the corresponding scope rules:
e Suppose that an ImportDecl in the Pgmfile encloses an ImportName identifying a
binding ‘(i,k)’. The binding ‘(i,k)’ also has the PgmFileBody as a scope.

e Suppose that an ImportDecl in a Libfile encloses an ImportName identifying a binding
‘(i,k)’. The binding ‘(i,k)’ also has the LibFileBody as a scope.

These scope rules imply the following roles:
Inherit the appropriate roles[58]==
SYMBOL PgmFileBody INHERITS RangeScope END;

SYMBOL LibFileBody INHERITS RangeScope END;

This macro is defined in definitions 58 and 59.
This macro is invoked in definition 65.

An ImportName is an applied occurrence that establishes an additional scope for the
binding it identifies. The WLInsertDef role supports this behavior (see Section “Worklist
search” in Name Analysis Reference Manual).

Inherit the appropriate roles[59]==

SYMBOL ImportName INHERITS WLInsertDef END;

This macro is defined in definitions 58 and 59.
This macro is invoked in definition 65.

WLInsertDef provides the standard attributes of an applied occurrence:
Sym is an integer-valued attribute specifying the identifier. This synthesized at-

tribute is set by a module computation to the value derived from the identifier
(see Section 1.2 [Tree Grammar Preconditions|, page 3).

36

UseKe

Key

Tutorial for Name Analysis Using ScopeGraphs

y is a DefTableKey-valued attribute characterizing the applied occurrence. This
synthesized attribute is set by a module computation.

is a DefTableKey-valued attribute representing the key of the corresponding
defining occurrence. This attribute is set by a module computation. Key is a
postcondition of the search.

Key is set to the value NoKey if the computation has been unable to find a
suitable defining occurrence.

WLInsertDef adds the following attributes to those for the standard applied occurrence:

DependsOn
is an FPItemPtr-valued attribute that represents the computation yielding the
existing binding. This attribute must be set by a developer computation.
Scope is a NodeTuplePtr-valued attribute representing the additional scope for the

identified binding. This inherited attribute is set by a module computation to
INCLUDING AnyScope.Env.

We must write computations to set the values of four of these five WLInsertDef attributes

in the

context of an ImportName. The first three are synthesized attributes, the fourth is

inherited:
Set WLInsertDef attributes[60]==

RULE: ImportName ::= WLName COMPUTE
ImportName.Sym = WLName.Sym;
ImportName.UseKey = WLName.UseKey;
ImportName.DependsOn = WLName.FPItem;

END;

SYMBOL ImportName COMPUTE
INH.Scope =
INCLUDING (Pgmfile.ImportEnv, Libfile.ImportEnv);
END;

This macro is defined in definitions 60, 61, 62, and 63.
This macro is invoked in definition 65.

The Sym and UseKey values must be propagated to WLName from its component identifiers;
this was done earlier for WLName .FPItem (see Section 2.2 [Inheritance|, page 24).

Set WLInsertDef attributes[61]==

SYMBOL WLName: UseKey: DefTableKey;

RULE: WLName ::= SimpleWLName COMPUTE
WLName.Sym = SimpleWLName.Sym;
WLName.UseKey = SimpleWLName.UseKey;

END;

RULE: WLName ::= WLName ’.’ QualifiedWLId COMPUTE
WLName[1] .Sym = QualifiedWLId.Sym;
WLName [1] .UseKey = QualifiedWLId.UseKey;

Chapter 3: Libraries 37

END;
This macro is defined in definitions 60, 61, 62, and 63.
This macro is invoked in definition 65.

In order to obtain a value for ImportName.Scope in every context, we need to establish
values for Pgmfile.ImportEnv and Libfile.ImportEnv. The simplest case is the one in
which there are no import declarations. If there are no import declarations there will be no
ImportName nodes, and therefore the value of Pgmfile.ImportEnv or Libfile. ImportEnv
is not used and should represent no range:

Set WLInsertDef attributes[62]==
ATTR ImportEnv: NodeTuplePtr;

RULE: Pgmfile ::= Program COMPUTE
Pgmfile.ImportEnv = NoNodeTuple;
END;
RULE: Libfile ::= ’package’ PackageDefName ’;’ PackageBody
COMPUTE
Libfile.ImportEnv = NoNodeTuple;
END;

This macro is defined in definitions 60, 61, 62, and 63.
This macro is invoked in definition 65.

If import declarations are present, the additional scope for those bindings is the associ-
ated PgmFileBody or LibFileBody phrase:

Set WLInsertDef attributes[63]==

RULE: Pgmfile ::= ImportDecls PgmFileBody COMPUTE
Pgmfile.ImportEnv = PgmFileBody.Env;
END;

RULE: Libfile ::=
’package’ PackageDefName ’;’ ImportDecls LibFileBody
COMPUTE
Libfile.ImportEnv = LibFileBody.Env;
END;
This macro is defined in definitions 60, 61, 62, and 63.
This macro is invoked in definition 65.

The intent of the statement import ‘q.i’; is to make it possible to refer to the entity
named by ‘q.1i’ by the simple name ‘i’. Suppose that a user added the following line at the
beginning of single.nl:

import (Q.C.m;

The result is a contradiction, allowing two distinct entities to have the same simple name m,
and an error must be reported (see Section “Source Text Coordinates and Error Reporting”
in The Eli Library). When a single import collides with another one, the value of its
ImportName.Key attribute differs from the value of the WLName .Key attribute (see Section
“Worklist search” in Name Analysis Reference Manual). Again, WLName.Key is the Key
attribute of the rightmost applied occurrence:

38 Tutorial for Name Analysis Using ScopeGraphs

Report a collision error in a single import[64]==

RULE: ImportName ::= WLName COMPUTE
IF(NE(ImportName.Key, WLName.Key),
message (
ERROR,
CatStrInd("Ambiguous import: ", WLName.Sym),
0,
COORDREF)) ;
END;
This macro is invoked in definition 65.
Attaching the LIDO specifications to the abstract syntax tree:
Abstract syntaz tree[65]==

Inherit the appropriate roles[58]
Set WLInsertDef attributes[60]
Report a collision error in a single import[64]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG%Single > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Draw the scope graph for single.nl, and label the path edges. Suppose that the name
analysis were to be done strictly from left to right, without using a worklist algorithm.
Briefly explain why this analysis would fail.

2. Use Bindings.specs to generate a processor named pk that will show bindings for
applied occurrences.

a. Apply pk to single.nl and verify that the result is correct.
b. Change the body of the program in single.nl to:
{ float a; a = 42; m(); }
Apply pk to the modified file. Explain why float a hides the import rather than

colliding with it (for a hint, see Section “Basic Scope Rules” in Name analysis
according to scope rules).

3. Modify single.nl by changing the name of the class C in the package Q to E. Apply
pk to the modified file. Is the output what you expected? Do you think that the error
report could be improved? Explain briefly.

3.2 Import on demand

An import on demand is used to make it possible to refer to every entity declared in a
package (or a class) by a simple name rather a qualified name. Here is an example:

Chapter 3: Libraries 39

demand.nl[66]==

import insects.*;
{ float rate;

rate = verbs.fly.distance / fly.legs;
}

package insects;

class ant { }

class fly { int legs; }
class bee { }

package verbs;
class run { }
class fly { int distance; }

This macro is attached to a non-product file.

The import declaration in demand.nl makes all of the members of the package insects
(ant, fly, and bee) accessible via simple names in the program code. The user takes
advantage of this effect in the expression’s denominator to use a simple name for the fly
class (compare demand.nl with pkg.nl).

Here is the addition to the NameLan concrete syntax that supports import on demand:
Phrase structure[67]==

ImportDecl: ’import’ WLName ’.° 7%’ 7;’.
This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.
We shall see that this declaration adds a path edge to the scope graph, and therefore its
applied occurrence must be sought using the worklist algorithm.

A new abstract syntax symbol is needed to represent the occurrence of a WLName in the
context of an ImportDecl. Since the operand of import might refer to either a package or
a class, we’ll use PCName:

Make contexts of complete names explicit[68|==

RULE: ImportDecl ::= ’import’ PCName ’.’ ’*’ ’;’ END;
RULE: PCName ::= WLName END;
This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.

This macro is invoked in definition 38.

Our scope rules governing NameLan’s import on demand construct are:

e Suppose that an ImportDecl in the Pgmfile encloses a PCName ‘p’. Any binding that
is a member of ‘p’ also has the PgmFileBody as a scope, unless a single import of that
binding’s identifier has the PgmFileBody as a scope.

e Suppose that an ImportDecl in a Libfile encloses a PCName ‘p’. Any binding that is
a member of ‘p’ also has the LibFileBody as a scope, unless a single import of that
binding’s identifier has the LibFileBody as a scope.

e No binding having the PgmFileBody or a LibFileBody as a scope hides any other
binding.

40 Tutorial for Name Analysis Using ScopeGraphs

The intent of the statement import ‘q.*’; is to make it possible to refer to some of the
members of ‘q’ by simple names rather than qualified names. Suppose that the user added a
statement import verbs.*; to demand.nl. In that case, both insects.fly and verbs.fly
could be referred to by the simple name fly and that reference would be ambiguous. No
error should be reported, unless that simple name is actually used (as it is in the third line
of demand.nl).

Each import on demand can be modeled by a path edge whose tail is the scope graph
node created for the PgmFileBody or LibFileBody in which the import on demand occurs,
and whose tip is the scope graph node owned by the entity being imported (see Section
“Scope graphs” in Name Analysis Reference Manual). The generic lookup algorithm will
then implement the import rule by following that path edge (see Section “The generic
lookup” in Name Analysis Reference Manual).

The semantics of a path edge modeling an import on demand differ from those of a path
edge modeling inheritance. We therefore need to use a second edge label for import edges
(see Section “Scope graphs” in Name Analysis Reference Manual). Eli allows us to use the
default edge label 1 without comment, and we have taken advantage of this avoid specifying
edge labels. The result is that Eli has silently used the label 1 to indicate an inheritance
edge. We will use the label 2 to indicate an import edge.

Adding an import path edge to the scope graph is similar to adding an inheritance path
edge (see Section 2.2 [Inheritance], page 24). The only real difference is that we must specify
the label attribute because it is not the default value 1:

Abstract syntazx tree[69]==
SYMBOL PCName INHERITS WLCreateEdge COMPUTE

SYNT.tailEnv = INCLUDING AnyScope.Env;
SYNT.label = 2;

END;

RULE: PCName ::= WLName COMPUTE
PCName.tipFPItem = WLName.FPItem;

END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.
Import edges do not address the scope rule that prohibits hiding. Consider the following
program:
hide.nl[70]==
import hide.*;
{ float rate;
rate = verbs.fly.distance / insects.fly.legs;

¥

package insects;

class ant { }

class fly { int legs; }
class bee { }

Chapter 3: Libraries 41

package verbs;
class run { }
class fly { int distance; }

package hide;
class insects { }
class verbs { }

This macro is attached to a non-product file.

When the applied occurrences verbs and insects in the assignment statement are
analyzed, bindings are first sought in the scope graph node created for the enclosing Block,
then in the node created for the enclosing Program, and finally in the node created for
the enclosing PgmFileBody. The scope graph node created for that range is the tail of an
import edge whose tip is the scope graph node owned by the hide package. Both verbs
and insects are defined in the hide package, so the entities bound to those identifiers will
be returned by the generic lookup.

If there had been no import on demand, bindings for verbs and insects would have ul-
timately been sought (and found) in the scope graph node for Collection. Thus the import
on demand has hidden the defining occurrences in Collection, violating the prohibition
on hiding.

We can solve the problem by creating an edge from each scope graph node created for
a Program or PackageBody to the scope graph node created for the Collection. The
semantics of this bypass edge differ from those of inheritance and import edges, and we’ll
assign it the index 3. Because path edges are followed before parent edges, the search will
bypass the scope graph node created for PgmFileBody and find the package bindings for
verbs and insects. In other words, the bypass edge will implement the prohibition on
hiding.

Neither the tips nor the tails of these bypass edges are defined by names. Therefore the
BoundEdge role is appropriate (see Section “Path edge creation roles” in Name Analysis
Reference Manual).

Abstract syntax tree[7T1]==

SYMBOL Toplevel INHERITS BoundEdge COMPUTE
SYNT.tailEnv = THIS.Env;
SYNT.tipEnv = INCLUDING Collection.Env;
SYNT.label = 3;

END;

SYMBOL Program INHERITS Toplevel END;
SYMBOL PackageBody INHERITS Toplevel END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.
Because we now have more than one edge label, we must define MaxKindsPathEdge
in a file named ScopeGraphs.h (see Section “Scope graphs” in Name Analysis Reference
Manual).

42 Tutorial for Name Analysis Using ScopeGraphs

ScopeGraphs.h content[72]==

#define MaxKindsPathEdge 3

This macro is defined in definitions 72, 107, and 109.
This macro is invoked in definition 73.

We must protect against ScopeGraphs.h being included more than once in some C
compilation. Conventionally, Eli uses the name of the include file, in capital letters with
dots replaced by underscores, as the controlling symbol:

ScopeGraphs.h[73|==

#ifndef SCOPEGRAPHS_H

#define SCOPEGRAPHS_H

ScopeGraphs.h content[72]

#endif

This macro is attached to a product file.
We must add ScopeGraphs.h to the set of specification files:
Specification files[74]==

ScopeGraphs.h

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/,Demand > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Draw the scope graph for hide.nl. Identify the path edges introduced by the compu-
tations in this section.

2. Use Bindings.specs to generate a processor named pk that will show bindings for
applied occurrences. Apply pk to both demand.nl and hide.nl, and verify that the
analysis is correct.

3. Add the following line as the first line of demand.nl, and apply pk to the modified file:
import verbs.x*;

a. Is the output what you expected? See Section “Deciding among possible bindings”
in Name Analysis Reference Manual, for an explanation.

b. Change the denominator of the assignment to insects.fly.legs and apply pk to
the changed file. Is the output what you expected?

c. This example shows that introducing ambiguity through import on demand does
not result in an error report unless the ambiguous name is actually used. Do you
agree or disagree with this design decision? Explain briefly.

4. Add a class noun to package hide and create a reference to noun in the program. Apply
pk to the modified hide.nl.

a. Did you get the result you expected?
b. Explain how the generic lookup routine found the binding for noun.

43

4 Interaction with Type Analysis

Classes provide the structure for objects. An object can be created by applying the new
operator to a class. The state of an object, embodied in the values of its variables, can
be changed by executing operations on it. A reference to an object can be assigned to a
variable of the object’s class type or any of its superclass types.

Here is an example whose classes implement a very simple NamelLan expression tree:
expr.nl[75]|==
class Expr {

int eval() { }
}

class Dyadic extends Expr {
Oper op; Expr left; Expr right;
int eval() {
return op.eval(left.eval(), right.eval());
b
3

class IntDenot extends Expr {
int v; /* v is set when the object is created */
int eval() { return v; }

class Oper {
int eval(int 1, int r) { }

class Plus extends Oper {
int eval(int 1, int r) { return 1 + r; }

class Minus extends Oper {
int eval(int 1, int r) { return 1 - r; }

{ IntDenot 1 = new IntDenot; 1.v = 3;
Expr e = 1;
int v = e.eval();
/* v now holds the integer value 3 */

}

This macro is attached to a non-product file.
The block here creates an object representing an integer expression “3” and then evaluates
that expression.
The only obvious extensions necessary to accommodate this example are to accept a
Name as a Type and to recognize object creation:

44 Tutorial for Name Analysis Using ScopeGraphs

Phrase structure[76]==
Type: Name.
Expr: ’new’ Name.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

In these contexts, the Name will always be a class name:

Make contexts of complete names explicit[77]==

RULE: Type ::= ClassName END;
RULE: Expr = ’new’ ClassName END;
RULE: ClassName ::= Name END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.
Although these syntactic extensions allow us to accept programs like expr.nl, they are
not sufficient to support name analysis.

Consider the three occurrences of eval in the return statement in class Dyadic. In none
of these cases is eval’s qualifier the name of a class having members. Instead, each is a
variable containing a reference to an object of a class which has members. The type of that
variable tells us the class from which the object was created. For this reason, we speak of
a qualified name in which the qualifier is a variable as a type-qualified name.

Notice that a type-qualified ClassName makes no sense: variables do not have members
that are types.

You can see the effect of type-qualified names by generating a processor that is missing
computations to derive members from types, and applying that processor to expr.nl (see
Section “Execute a command in a specified directory” in Products and Parameters Reference
Manual).

-> $elipkg/Name/LearnSG),Type > .
-> . +cmd=(NamelLan.specs :exe) (expr.nl) :run

4.1 Connect to the Typing module

In order to analyze a type-qualified name, we need to know the qualifier’s type. The task
of type analysis is to determine a type for every construct that has a type, and therefore
name analysis of type-qualified names needs support from type analysis.

The basic type analysis computations are provided by the Eli Typing module (see Section
“Typed Entities” in Type Analysis Reference Manual). We should instantiate this module
in order to help us to analyze type-qualified names:

Specification files[78]|==

$/Type/Typing.gnrc :inst
This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.
NameLan uses name equivalence for types, so Typing represents each type by a unique
definition table key. There are three language-defined types, and each class is a user-defined

type.

Chapter 4: Interaction with Type Analysis 45

We need to initialize definition table keys for the three language-defined types (see
Section “How to specify the initial state” in The Property Definition Language). Each
of these definition table keys should have a property IsType that is set to 1. The type
analysis module uses the IsType property to distinguish keys representing types from keys
representing other entities:

Properties and property computations[79)==

intType -> IsType={1};
floatType -> IsType={1};
voidType -> IsType={1};

This macro is defined in definitions 79, 94, 126, 132, 143, and 148.
This macro is invoked in definition 80.

Property definitions and computations are specified in a file of type .pdl, which must
be added to the set of specifications:
NameLan.pdl[80]==
Properties and property computations[79]
This macro is attached to a product file.
Specification files[81]==
NameLan.pdl

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Definition table keys for user-defined types are created by the TypeDenotation role (see
Section “User-Defined Types” in Type Analysis Reference Manual). If a symbol inherits
this role, a module computation creates a new key, sets its IsType property to 1, and stores
it as the symbol’s Type attribute:

Construct that represents a subtree denoting a type[82]==

SYMBOL ClassBody INHERITS TypeDenotation END;

This macro is invoked in definition 88.
This guarantees that each ClassBody.Type has a unique definition table key whose IsType
property value is 1.

Type keys are made available to a variable declaration via the DefTableKey-valued Type
attribute of the Type symbol. The Type symbol for a language-defined type is a keyword,
while the Type symbol for a user-defined type is an identifier:

FEstablish the Type attribute of Type[83]==
ATTR Type: DefTableKey;

RULE: Type ::= ’int’ COMPUTE Type.Type = intType; END;
RULE: Type ::= ’float’ COMPUTE Type.Type = floatType; END;
RULE: Type ::= ’void’ COMPUTE Type.Type = voidType; END;
RULE: Type ::= ClassName COMPUTE Type.Type = ClassName.Type; END;

This macro is invoked in definition 88.
Note that in order to establish the Type attribute of a Type construct representing a class
type, name analysis must first determine the meaning of a (qualified) name. We will return
to this point in the next section.

46 Tutorial for Name Analysis Using ScopeGraphs

An identifier that is a Type symbol plays a different role in type analysis than an identifier
that names a typed entity. That means we need to inherit relevant type analysis roles and
set any attribute values that the Typing module requires:

Construct defining one or more entities of the same type[84]==
SYMBOL VarDecl INHERITS TypedDefinition END;

RULE: VarDecl ::= Type VarDefs ’;’ COMPUTE
VarDecl.Type = Type.Type;
END;

SYMBOL Parameter INHERITS TypedDefinition END;

RULE: Parameter ::= Type ParamDefName COMPUTE
Parameter.Type = Type.Type;
END;

This macro is invoked in definition 88.
Defining occurrence of an identifier for a typed entity[85]==

SYMBOL VarDefName INHERITS TypedDefId END;
SYMBOL ParamDefName INHERITS TypedDefId END;
This macro is invoked in definition 88.

Defining occurrence of a type identifier[86]==
SYMBOL ClassDefName INHERITS TypeDefDefId END;

RULE: ClassDecl ::= ’class’ ClassDefName Inheritance ClassBody COMPUTE
ClassDefName.Type = ClassBody.Type;
END;

This macro is invoked in definition 88.
Applied occurrence of a type identifier[87]==
SYMBOL ClassName INHERITS TypeDefUseId END;

RULE: ClassName ::= Name COMPUTE
ClassName.Key = Name.Key;
END;

This macro is invoked in definition 88.

In summary, the computations to connect the Typing module to our existing name
analysis framework are:

Abstract syntazx tree[88]==

Establish the Type attribute of Typel[83]

Construct defining one or more entities of the same typel[84]
Defining occurrence of an identifier for a typed entity[85]
Construct that represents a subtree denoting a typel[82]
Defining occurrence of a type identifier[86]

Applied occurrence of a type identifier[87]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,

Chapter 4: Interaction with Type Analysis 47

65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.

4.2 Type-qualified entity names

Consider the declaration of Dyadic from expr.nl:

class Dyadic extends Expr {
Oper op; Expr left; Expr right;
int eval() {
return op.eval(left.eval(), right.eval());
X
3

The variable op is a qualifier in the return expression, so the processor must determine
its type in order to find the member set containing the binding for eval. But before the
type property of the variable op can be determined, name analysis must find the meaning
of Oper. (We mentioned this constraint in the last section.)

We must make certain that the type of op is known before we can analyze the type-
qualified name op.eval. The type module provides the necessary information by setting
the attribute RootType.TypeIsSet after all typed identifiers have their type properties set
(see Section “Dependence in Type Analysis” in Type Analysis Reference Manual). We can
use this attribute to establish the precondition for analyzing qualified names in the contexts
where those names might be type-qualified (see Section 2.1 [Qualified names|, page 20). The
precondition must be passed down to every qualifier in a qualified name:

Abstract syntazx tree[89]==

RULE: MethName ::= Name COMPUTE

Name.ContextIsReady += INCLUDING RootType.TypelsSet;
END;
RULE: ExprName ::= Name COMPUTE

Name.ContextIsReady += INCLUDING RootType.TypelsSet;
END;
RULE: Name ::= Name ’.’ QualifiedId COMPUTE

Name [2] .ContextIsReady += Name[1].ContextIsReady;
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

We cannot make RootType.TypeIlsSet a precondition for names in the ClassName con-
text without introducing an extra worklist algorithm, because a ClassName can set the type
of variable and therefore contributes to RootType.TypeIlsSet. As language designers, we
choose to avoid this complexity by introducing the following rule:

e Variable names are not allowed in ClassName contexts.

This restriction has no significant effect on the expressive power of NameLan.

48 Tutorial for Name Analysis Using ScopeGraphs

The generic lookup invokes AccessNodesFromQualifier when dealing with a
QualifiedId, to obtain the set of bindings in which that applied occurrence must be
sought (see Section “Obtain a range from a qualifier” in Name Analysis Reference Manual).
The default implementation of AccessNodesFromQualifier yields the set of bindings
owned by the qualifier. If the qualifier is a variable, however, AccessNodesFromQualifier
must yield the set of bindings owned by that variable’s type. Thus, as developers, we need
to override the default implementation of AccessNodesFromQualifier:

AccessNodesFromQualifier.c[90]==

#include "AccessNodesFromQualifier.h"
#include "pdl_gen.h"
NodeTuplePtr
AccessNodesFromQualifier(DefTableKey qualifier, DefTableKey appselector)
{ NodeTuplePtr res = GetOwnedNodeTuple(qualifier, NoNodeTuple);
if (res == NoNodeTuple)
res = GetOwnedNodeTuple(GetTypeOf (qualifier, NoKey), NoNodeTuple);
return res;

¥

This macro is attached to a product file.

Note that this implementation of AccessNodesFromQualifier first assumes that the qual-
ifier owns a set of members. If that assumption is correct, the set members is returned.
Only if the qualifier does not own any members does AccessNodesFromQualifier obtain
the qualifier’s type and seek the members of that type. This behavior is necessary because
AccessNodesFromQualifier is invoked for every QualifiedId regardless of the context.

AccessNodesFromQualifier.c is one of the specification files:
Specification files[91]==
AccessNodesFromQualifier.c
This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

The only remaining issue is how to report a violation of the rule that a variable name is
not allowed in a ClassName context. That report should be attached to the leftmost incor-
rect component of the ClassName, which might be either a SimpleName or a QualifiedId.
We’ll wrap the necessary computation in a role named ChkLegalClassName:

Abstract syntaz tree[92]==

SYMBOL SimpleName INHERITS ChkLegalClassName END;
SYMBOL QualifiedId INHERITS ChkLegalClassName END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

ChkLegalClassName should report an error if and only if all of the following conditions
are satisfied:

e The applied occurrence identifies a binding ‘(i, k).
e The entity ‘k’ is a variable.

e The applied occurrence is in a ClassName context.

Chapter 4: Interaction with Type Analysis

Abstract syntax tree[93]==

SYMBOL ChkLegalClassName COMPUTE
IF (AND (AND (
NOT (EQ(THIS.Key, NoKey)),
GetIsVariable(THIS.Key, 0)),
INCLUDING (ClassName.InClassName, RootScope.InClassName)),
message (

ERROR,
CatStrInd ("Must not occur in a class name: ", THIS.Sym),
0,
COORDREF)) ;

END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

The IsVariable property must be set to distinguish entities that are variables
Properties and property computations[94]|==

IsVariable: int; /* 1 if the entity is a variable */
This macro is defined in definitions 79, 94, 126, 132, 143, and 148.
This macro is invoked in definition 80.

Abstract syntazx tree[95]==

SYMBOL VarDefName COMPUTE
SYNT.GotDefKeyProp += ResetIsVariable(THIS.Key,1);
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

49

Making GotDefKeyProp depend on the setting of the IsVariable property ensures that the
property’s value will be available before any computation attempts to access it (see Section

“Defining Occurrences” in Name Analysis Reference Manual).
Finally, we need to set the InClassName attribute that defines the context:
Abstract syntazx tree[96]==

SYMBOL ClassName, RootScope: InClassName: int;
SYMBOL ClassName COMPUTE SYNT.InClassName = 1; END;
SYMBOL RootScope COMPUTE SYNT.InClassName 0; END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in

your current directory, enter Eli and give the following command:
-> $elipkg/Name/LearnSGLTQ > .

50 Tutorial for Name Analysis Using ScopeGraphs

None of these files will have write permission in your current directory.

1. Verify that type-qualified names are correctly handled by generating a processor called
tq and applying that processor to expr.nl.

2. List the four kinds of entity that can be bound to NameLan identifiers.

3. An identifier bound to an entity of each kind might occur in a qualified name. Write
a correct NameLan program in which an identifier bound to each kind of entity occurs
in some qualified name. Verify your program using tq.

4. State the kinds of entity that can not legally be bound to an identifier occurring in
each of the following contexts:

e after a dot in a qualified name
e before a dot in a qualified name
e in a qualified ClassName

e at the end of a type-qualified name

Briefly explain each of your answers.

5. Write a syntactically correct program with qualified names that are illegal for the
reasons you stated above, and check it with tq. Are you satisfied by the results?
Explain briefly.

4.3 Type-qualified edge names

We have seen that type-qualified names require cooperation between name and type analysis
modules, and how they introduce dependence among computations. The type-qualified
names in expr.nl describe components of an expression in a value context. Suppose that,
for some reason, there is a section of code containing a number of references to the members
of some computed object. The NameLan with statement allows the user to use simple names
to refer to the members of a class:

Phrase structure[97]|==
Statement: ’with’ Name ’do’ WithBody.

WithBody: Statement.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

The attributes needed for a Name in this context will differ from those needed in other
contexts, so we define a new abstract syntax symbol to differentiate the context:
Make contexts of complete names explicit[98]==
RULE: Statement ::= ’with’ WithName ’do’ WithBody END;

RULE: WithName ::= Name END;

This macro is defined in definitions 37, 44, 56, 57, 68, 77, and 98.
This macro is invoked in definition 38.

Because the WithName may be type-qualified, we need to ensure that all types have been
defined before analyzing it:
Ensure that types are defined[99]==

RULE: WithName ::= Name COMPUTE
Name.ContextIsReady += INCLUDING RootType.TypelsSet;

Chapter 4: Interaction with Type Analysis 51

END;
This macro is invoked in definition 105.
Here is an example in which the WithName is a simple variable name:
with.nl[100]==
class T { int a, b, c; }
{ float a, c = 1.2;
Tp=newT; p.c =3;
Tr new T; r.b = 4;
a=r.b+ c;
with p do a = r.b + c;

by

This macro is attached to a non-product file.
Our scope rule for a NameLan with statement is:

e The WithBody is an anonymous class whose superclass is the class of the WithName.

This rule implies that the WithBody must be a range:
Abstract syntazx tree[101]==

SYMBOL WithBody INHERITS RangeScope END;
This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,

112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.

Recall that inheritance is modeled by a path edge in the scope graph (see Section 2.2
[Inheritance], page 24). We need to add that edge to the graph, but the edge tip is defined by
a name that may be type-qualified. Therefore the inheritance edge cannot be constructed
until all edges have been added to the graph and the types of all typed identifiers have
been determined. This is clearly impossible: “all edges have been added” cannot be a
precondition for “add an edge”.

The paradox can be avoided by using the OutSideInDeps role to partition the name
analysis of with.nl into two problems (see Section “The OutSideInDeps role” in Name
Analysis Reference Manual).

Partition the program analysis[102]==

SYMBOL WithBody INHERITS OutSideInDeps END;

This macro is defined in definitions 102 and 104.

This macro is invoked in definition 105.
This statement implies that there is a subgraph ‘W of the scope graph ‘G’, such that no
edge may have its tail in ‘G-W’ and its tip in ‘W. Subgraph ‘W’ corresponds to the abstract
syntax subtree rooted in the WithBody node. Given this property of the scope graph, we
can complete the name and type analysis of lines 1-4 of with.nl without considering the
inheritance edge. At that point we will have all of the information necessary to add the
inheritance edge and analyze the WithBody.

The OutSideInEdge role attaches computations to add the inheritance edge. The sym-
bol inheriting OutSideInEdge corresponds to the scope graph node that is the tail of the
inheritance edge, and the tip is the node obtained from the Key of the WithName (see Section
“The OutSideInDeps role” in Name Analysis Reference Manual).

52 Tutorial for Name Analysis Using ScopeGraphs

Add the path edge to the graph[103]==
SYMBOL WithBody INHERITS OutSideInEdge END;

RULE: Statement
WithBody.tipEnv

’with’ WithName ’do’ WithBody COMPUTE
AccessNodesFromQualifier (WithName.Key, NoKey) ;

END;

RULE: WithName ::= Name COMPUTE
WithName.Key = Name.Key;

END;

This macro is invoked in definition 105.

We need to partition the type analysis as well (see Section “Interaction with type anal-
ysis” in Name Analysis Reference Manual).

Partition the program analysis[104]==

SYMBOL TypedDefId INHERITS SetTypeOfEntity END;
SYMBOL TypedUseIld COMPUTE
SYNT.TypeIsSet=INCLUDING OutSideInDeps.GotEntityTypes;

END;

This macro is defined in definitions 102 and 104.

This macro is invoked in definition 105.

Combining the attribute computations and adding them to the other specifications gives

us a complete specification from which we can generate a processor that handles programs
like with.nl:

Abstract syntazx tree[105]==
Ensure that types are defined[99]
Partition the program analysis[102]
Add the path edge to the graph[103]

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/With >
None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Use Bindings.specs to generate a processor named with that will show the bindings
for applied occurrences, and apply it to with.nl. Is the result what you expected?

2. The variable r.b is accessed via a qualified name within the with statement of with.nl.
Briefly explain why you could not implement a construct like the following to allow
r.b to be accessed via a simple name:

with p,r do a = b + ¢;

Chapter 4: Interaction with Type Analysis 53

3. Suppose that a language designer allowed the WithName to be a list as in the previous
exercise. Provide reasonable scope rules for such a construct.

95

5 Multiple Scope Graphs

The scope graph is the basic data structure for name analysis (see Section “Fundamentals
of Name Analysis” in Name Analysis Reference Manual). Its structure embodies the rela-
tionships among ranges dictated by scope rules, and its content reflects the set of defining
occurrences subject to those rules. There are two reasons that a processor specification may
require more than one scope graph:

e The language permits several defining occurrences of the same identifier to bind to
different entities in a given range.

e Different constructs in the language obey different scope rules.

In the first case the scope graphs are isomorphic, but the contents vary because they de-
scribe different defining occurrences; in the second the structure varies because the scope
rules are different. This chapter extends NameLan in two ways, to illustrate the necessary
computations.

5.1 Reusing identifiers in the same scope

It’s hard to think up names! Suppose that, as language designers, we allow a programmer
to use the same identifier to represent a package, a class, a variable, and a method in a
single range. If we, as developers, can decide which of these is meant on the basis of context
then we can use distinct scope graphs to obtain the proper defining occurrence for each
applied occurrence. Here is an example:
mged.nl[106]==
import gcd.*;
class gcd { int z; }
int gcd;
int gcd(int x, int y) {
while (x !'= y) {
if x>y) x=x-1y;
else y =y - x;
}
return Xx;
}
{ gcd c;
gcd = ged(c.z, w); }

package gcd;
int w;
This macro is attached to a non-product file.

The program in mged.nl contains four applied occurrences of ged with different mean-
ings. You would probably have little difficulty deciding on the basis of context that the
first applied occurrence names the package, the second names the class, the third names
the variable, and the fourth names the method.

An Eli-generated processor needs four scope graphs to support that intuition, each mod-
eling the bindings for one kind of entity. Because the scope rules are the same for all of the

56 Tutorial for Name Analysis Using ScopeGraphs

identifiers naming those entities, the scope graphs will have the same structure but different
contents; the graphs themselves are isomorphic (see Section “Isomorphic Scope Graphs” in
Name Analysis Reference Manual).

A single instantiation of the ScopeGraphs module will support any number of isomor-
phic scope graphs, but the scope graph data structures that Eli builds when generating
a processor must be capable of handling the maximum number of isomorphic graphs sup-
ported by any single instantiation. This number is conveyed by the pre-processor identifier
MaxIsoGraphs (see Section “Isomorphic Scope Graphs” in Name Analysis Reference Man-
ual). We need to override the default value of 1 by placing a directive in ScopeGraphs.h
(see Section 3.2 [Import on demand], page 38).

ScopeGraphs.h content[107]==

#define MaxIsoGraphs 4
This macro is defined in definitions 72, 107, and 109.
This macro is invoked in definition 73.
The actual number of isomorphic scope graphs associated with a single instantiation
of the module is specified by the NumberOfIsoGraphs attribute of the root symbol of the
grammar (see Section “Isomorphic Scope Graphs” in Name Analysis Reference Manual).

Abstract syntax tree[108]==

SYMBOL Collection COMPUTE SYNT.NumberOfIsoGraphs=4; END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Each graph is indexed by a integer whose value is between 0 and 3. Values larger that 3
can be used to give information about the syntactic context, but indicate that the specific
graph to be used either is unknown or must be computed. (We call these weak contexts to
distinguish them from the strong contexts where the specific graph can be determined.)

It’s a good idea to use a symbolic name instead of a numeric value when specifying a
graph index. Appropriate names can be defined as a C enumeration in ScopeGraphs.h:

ScopeGraphs.h content[109]==

enum {
packageGraph, classGraph, variableGraph, methodGraph,
packageOrClassContext, ambiguousContext
};
This macro is defined in definitions 72, 107, and 109.
This macro is invoked in definition 73.
The first four identifiers, whose representations end in Graph, index the scope graphs. The
remaining identifiers, whose representations end in Context, model weak contexts.

Each defining or applied occurrence has a GraphIndex attribute. By default, the values
of those attributes are set to 0. This default corresponds to the case of a single scope graph.

When the module instantiation supports several isomorphic scope graphs, the developer
must override the default values of the GraphIndex attributes with the index of the appro-
priate scope graph. Defining occurrences are strong contexts that are straightforward to
specify (note that a parameter is considered to be a variable):

Chapter 5: Multiple Scope Graphs 57

Abstract syntazx tree[110]==
ATTR GraphIndex: int;

SYMBOL PackageDefName COMPUTE
INH.GraphIndex = packageGraph;
END;

SYMBOL ClassDefName COMPUTE
INH.GraphIndex = classGraph;
END;

SYMBOL VarDefName COMPUTE
INH.GraphIndex = variableGraph;
END;

SYMBOL ParamDefName COMPUTE
INH.GraphIndex = variableGraph;
END;

SYMBOL MethodDefName COMPUTE
INH.GraphIndex = methodGraph;

END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Applied occurrences are always components of the complete names that we have defined
throughout this document (see Section 2.1 [Qualified names|, page 20). As language de-
signers, we must state NameLan rules for the context of each complete name, and then as
developers derive LIDO computations to implement them. Here we write just the LIDO
computation for each such context, however, leaving it to you to deduce an appropriate
NameLan rule:

Abstract syntax tree[111]==

RULE: ClassName ::= Name COMPUTE
Name.GraphIndex = classGraph;

END;

RULE: ExprName ::= Name COMPUTE
Name.GraphIndex = variableGraph;

END;

RULE: MethName ::= Name COMPUTE
Name.GraphIndex = methodGraph;

END;

RULE: WithName ::= Name COMPUTE

Name.GraphIndex = variableGraph;

58 Tutorial for Name Analysis Using ScopeGraphs

END;
RULE: SuperClass ::= WLName COMPUTE
WLName .GraphIndex = classGraph;
END;
RULE: ImportName ::= WLName COMPUTE
WLName.GraphIndex = classGraph;
END;
RULE: PCName ::= WLName COMPUTE
WLName .GraphIndex = packageOrClassContext;
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.
Note that all but one of these complete names is in a strong context. The only weak context
is the PCName, which could be either a package name or a class name (see Section 3.2 [Import
on Demand], page 38).

Once we know the context of a complete name, we need to analyze the applied oc-
currences making up that name. The context for a complete name applies only to the
rightmost applied occurrence of that complete name. If the complete name is a simple
name, the computations are:

Abstract syntazx tree[112]==

RULE: Name ::= SimpleName COMPUTE
SimpleName.GraphIndex = Name.GraphIndex;

END;

RULE: WLName ::= SimpleWLName COMPUTE
SimpleWLName.GraphIndex = WLName.GraphIndex;

END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

The NameLan rules that we, as language designers, have formulated to define the mean-
ings of other applied occurrences come in two parts: definition of the weak contexts of any
qualifiers, and then resolution of those weak contexts by selecting possible bindings. The
rules for qualifier contexts are:

e A name to the left of the rightmost . in a qualified ClassName is a package-or-class
name.

e A name to the left of the rightmost . in a qualified package-or-class name is a package-
or-class name.

e A name to the left of the rightmost . in a qualified ExprName is an ambiguous name.

e A name to the left of the rightmost . in a qualified MethName is an ambiguous name.

Chapter 5: Multiple Scope Graphs 59

e A name to the left of the rightmost . in a qualified ambiguous name is an ambiguous
name.

Here is a LIDO implementation of these rules:
Abstract syntax tree[113]==

RULE: Name ::= Name ’.’ QualifiedId COMPUTE
QualifiedId.GraphIndex = Name[1].GraphIndex;
Name [2] .GraphIndex =
IF(EQ(Name [1] .GraphIndex,classGraph),
packageOrClassContext,
IF(EQ(Name[1] .GraphIndex,packageOrClassContext),
packageOrClassContext,
ambiguousContext)) ;
END;

RULE: WLName ::= WLName ’.’ QualifiedWLId COMPUTE
QualifiedWLId.GraphIndex = WLName[1].GraphIndex;
WLName [2] .GraphIndex = packageOrClassContext;

END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,

65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

The GraphIndex attribute of the applied occurrence is passed to the generic lookup as the
GraphIndex property of the applied occurrence’s UseKey (see Section “Applied Occurrences”
in Name Analysis Reference Manual). If the value of the GraphIndex property is less
than the number of isomorphic scope graphs, N, the generic algorithm seeks a defining
occurrence in the indexed graph (recall that indexes start at 0). Otherwise, it seeks a
defining occurrence independently in each of the graphs, and presents the results in an
array G of length N. If no defining occurrence was found in graph k, then G[k] contains the
value NoKey.

If the value of the GraphIndex property was greater than or equal to N, the generic lookup
invokes a C function named DisambiguateGraphs before returning (see Section “Deciding
among possible bindings” in Name Analysis Reference Manual). DisambiguateGraphs is
given G, N, and the UseKey as arguments, and must return an appropriate value as the final
result of the generic lookup.

Eli’s default version of DisambiguateGraphs checks whether exactly one of the searches
yielded a result other than NoKey. If so, then it returns that result; otherwise it returns
NoKey. This implements the rule that wherever the context would allow a simple name to
have more than one meaning, the normal scope rules find only one of those meanings. File
mgcd.nl satisfies that condition, but ambig.nl does not:

ambig.nl[114]==

import v.*;

class A {
class C { int x; }

60 Tutorial for Name Analysis Using ScopeGraphs

A v,
{ v.C x;
v.C.x = 0; }

package v;
class C { int x; }
This macro is attached to a non-product file.

Consider the two uses of v at the beginning of the program block. It is reasonable to
interpret the first as an applied occurrence of the package name, since using a variable in
the type of another variable is counterintuitive. Interpretation of the second as an applied
occurrence of the variable name is also reasonable, although perhaps not as obvious as the
first. If NameLan is to allow programs like ambig.nl, it must provide appropriate rules
for the programmer. Those rules obviously can’t be stated in terms of G[k], which is an
implementation detail.

The solution is to explain the choice as a reclassification of the context, based on the
results of the searches. This reclassification turns a weak context into a strong context,
which requires the desired selection. Here are our rules for NameLan:

e Package-or-class names are reclassified as follows:
e If the package-or-class name is a simple name consisting of a single identifier:

e If the identifier is in the scope of a class declaration then the package-or-class
name is reclassified as a class name.

e Otherwise the package-or-class name is reclassified as a package name.

e If the package-or-class name is a qualified name, then it is reclassified as a class
name.

e Ambiguous names are reclassified as follows:
e If the ambiguous name is a simple name consisting of a single identifier:

e If the identifier is in the scope of a variable or parameter declaration then the
ambiguous name is reclassified as a variable name.

e Otherwise if the ambiguous name is in the scope of a class declaration then
the ambiguous name is reclassified as a class name.

e Otherwise the ambiguous name is reclassified as a package name.
e If the ambiguous name is a qualified name, the qualifier is first reclassified. Then:
e If the qualifier is reclassified as a package name or a class name then:

e If the identifier is a variable name in the qualifier’s range then the am-
biguous name is reclassified as a variable name.

e Otherwise if the identifier is a class name in the qualifier’s range then the
ambiguous name is reclassified as a class name.

e Otherwise an error is reported.
e If the qualifier is reclassified as a variable name of type ‘T’ then:

e If the identifier is a variable name in ‘T”’s class then the ambiguous name
is reclassified as a variable name.

Chapter 5: Multiple Scope Graphs 61

e Otherwise if the identifier is a class name in ‘T’’s class then the ambiguous
name is reclassified as a class name.

e Otherwise an error is reported.

Note that these rules do not require any actual modification of any GraphIndex. All they
do is to specify which of the elements of G DisambiguateGraphs should return. There is no
requirement that the selected element of G differ from NoKey. If the variable GraphIndex
contains the value of the GraphIndex property of the UseKey, here is a C computation that
implements the NameLan rules:

Implementation of the NameLan reclassification[115]==

if (GraphIndex == packageOrClassContext) {
if (G[classGraph] != NoKey) return G[classGraph];
return G[packageGraphl];

}

if (GraphIndex == ambiguousContext) {
if (G[variableGraph] != NoKey) return G[variableGraph];
if (G[classGraph] != NoKey) return G[classGraph];
return G[packageGraph];

}

This macro is invoked in definition 116.

The simplest way to complete the implementation is to download Eli’s version of
DisambiguateGraphs.c and then replace the default computation:

-> $elipkg/Name/DisambiguateGraphs.c >
DisambiguateGraphs.c[116]==
#include "deftbl.h"

#include "pdl_gen.h"
#include "ScopeGraphs.h"

DefTableKey
DisambiguateGraphs (DefTableKey G[], int N, DefTableKey app)
/* On entry-
* G[] is an array with N elements giving the result for each search
* app is the UseKey of the applied occurrence sought
* On exit-
* DisambiguateGraphs is the selected key
*%%/
{ int GraphIndex = GetGraphIndex(app, 0);

Implementation of the Namelan reclassification[115]

return NoKey;

¥

This macro is attached to a product file.

GetGraphIndex is used to obtain the UseKey’s GraphIndex property (see Section “Be-
havior of the basic query operations” in The Definition Table Module). The include file

62 Tutorial for Name Analysis Using ScopeGraphs

pdl_gen.h provides the interface for GetGraphIndex, and ScopeGraphs.h defines the sym-
bolic constants used in the computation. The final return statement avoids a compiler
warning.

DisambiguateGraphs.c must be included in the list of specifications:
Specification files[117]==
DisambiguateGraphs.c

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

—-> $elipkg/Name/LearnSG%Kinds > .
None of these files will have write permission in your current directory.
1. Explain why all qualifier contexts of WLNames are packageOrClassContext.

2. Explain why the default implementation of DisambiguateGraphs.c suffices for ana-
lyzing mgcd.nl (see Section “Deciding among possible bindings” in Name Analysis
Reference Manual).

3. Consider the two uses of v at the beginning of ambig.nl’s program block.
a. Give the contents of the array G for the first applied occurrence of v.

b. Use the context reclassification rules of NamelLan to explain how the context of
the first use of v should be reclassified.

c. Show that DisambiguateGraphs will return the correct graph index for this applied
occurrence of v.
d. Repeat the first three parts of this exercise for the second applied occurrence of v.

4. Use Bindings.specs to generate a processor and apply it to ambig.nl. Did you get
the results you expected?

5.2 Constructs obeying different scope rules

Consider the task of reading integer values from a file until the current number would cause
the running sum to exceed the first value on the file. The program must print the number
of values making up the final sum. The problem here is that there are two conditions under
which to exit the loop: either the data runs out or the preset value is exceeded.

As language designers, we can extend NameLan to simplify the solution to this problem:
Phrase structure[118]==

Statement: Loop / ’break’ Ident ’;’.
Loop: Ident ’:’ ’while’ ’(’ Expr ’)’ Statement.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

Here is a program that uses the extension:

Chapter 5: Multiple Scope Graphs 63

maxsum.nl[119]==

import stdio.x*;
{ int sum = 0, count = 0, below;
below = getint();
loop: while (feof(stdin) == 0) {
int next = sum + getint();
if (next > below) break loop;
sum = next; count = count + 1;
}
putint (count) ;

}

package stdio;

class file { }

file stdin;

int feof(file f) { }
int getint() { }

void putint(int v) { }

This macro is attached to a non-product file.

As developers, we need new abstract syntax symbols to distinguish the two new contexts
for an identifier (see Section “Representation of identifiers” in Name Analysis Reference
Manual). The obvious choices are LabelDef and LabelUse:

Abstract syntax of identifiers[120]==
RULE: Loop LabelDef ’:’ ’while’ ’(’ Expr ’)’ Statement END;

RULE: LabelDef = Ident END;
RULE: Statement = ’break’ LabelUse ’;’ END;
RULE: LabelUse = Ident END;

This macro is defined in definitions 8, 9, 26, 31, 33, 42, 51, and 120.
This macro is invoked in definition 10.
The Loop construct is a labeled while statement. Execution of a break statement ter-
minates the smallest enclosing Loop construct defining the given label. Our scope rule
is:

e The scope of a defining occurrence LabelDef is the smallest enclosing Loop.

The key point for name analysis of labels is that this scope rule requires a scope graph
whose structure is completely different from that of the scope graphs we have been using. It
therefore cannot be implemented by isomorphism, but requires an additional instantiation
of the ScopeGraphs and SGProof modules (see Name Analysis Reference Manual).

Specification files[121]==
$/Name/ScopeGraphs.gnrc +instance=LBL_ :inst
$/Name/SGProof . gnrc +instance=LBL_+referto=Ident :inst

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

64 Tutorial for Name Analysis Using ScopeGraphs

The instance argument LBL_ is needed to distinguish this instantiation from the one
used for analysis of other names (see Section “Basic Scope Rules” in Name Analysis ac-
cording to scope rules). That instantiation argument must prefix each role name used for
analysis of labels:

Abstract syntazx tree[122]==

SYMBOL Loop INHERITS LBL_RangeScope END;
SYMBOL LabelDef INHERITS LBL_IdDefScope END;
SYMBOL LabelUse INHERITS LBL_GCSimpleName, LBL_ChkIdUse END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG/Labels >

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Use Bindings.specs to generate a processor named 1bl and apply it to maxsum.nl.

It may happen that Eli does not find an evaluation order for the computations of
this specification. More than one instantiation plus type-qualified inheritance relations
(e.g. the with statement) present too many possibilities. In that case, you need to
eliminate some of those possibilities by adding dependence. The following delays the
computations of the LBL_ instance until the computations of the original instance are
done. That may help Eli to find an evaluation order:

SYMBOL LabelDef COMPUTE
INH.LBL_GraphIndex=0 <- INCLUDING OutSideInDeps.FPSolved;
END;

65

6 Selecting Acceptable Bindings

Consider the file clash.nl
clash.nl[123]==

import fsm.x*;
import random. *;
{ int count = 0;
state = 0;
while (state !'= 7) {
if (ran() < 0.25) advance(1);
else if (ran() < 0.8) advance(2);
else advance(3);
count = count + 1;

package fsm;
int state;
void advance(int input) {
if (input == 1) state = state - 1;
else if (input == 2) state = state + 1;
}

package random;

int state = 100001;

float ran() {
state = state x 125;
state = state - (state / 2796203) * 2796203;
return state / 2796203.0;

}

This macro is attached to a non-product file.

Two entities named state are available in the context of the program body, imported on
demand from separate packages. Because state is ambiguous, no unique binding for either
of the two applied occurrences in lines 4 and 5 can be found. See Section 3.2 [Import on
demand], page 38, Exercise 3.c, for a discussion of this problem.

File clash.nl illustrates a weakness of the package facility. The variable random. state
must retain its value from one call of ran to another, but there is no need for the name to be
visible outside of random. As language designers, we could address this weakness by adding
rules to NameLan allowing the programmer to specify that the binding for random.state
could not be identified by an applied occurrence of state in the context of lines 4 and 5 of
clash.nl.

This situation typifies an aspect of the name analysis process that we call acceptability:
random.state is an awailable binding for the applied occurrence in line 4 of clash.nl
according to the general scope rules of NameLan, but the additional rules prevent the
entity bound by it from being acceptable in that context.

66 Tutorial for Name Analysis Using ScopeGraphs

There are two common kinds of additional rules that prevent an available binding from
being acceptable in a particular context: access rules and position rules. Access rules define
some directive that a user can attach to a declaration to specify the contexts in which the
binding it creates is acceptable. Position rules involve the relative locations of the defining
and applied occurrences in the source text. We will cover each in the remainder of this
chapter.

6.1 Access rules

As language designers, we can solve the problem of clash.nl by introducing a private
directive into NameLan. Any variable, method, or class can be marked as being private to
the containing package:

Phrase structure[124]==

Declaration: ’private’ VarDecl.
Declaration: ’private’ MethodDecl.
Declaration: ’private’ ClassDecl.

This macro is defined in definitions 2, 25, 30, 32, 41, 50, 55,
67, 76, 97, 118, and 124.
This macro is invoked in definition 3.

The following access rules describe the effect of a private directive:

e Let binding ‘(i,k)’ be associated with a defining occurrence of ‘i’ located in package
‘P’ and marked private. An applied occurrence of ‘i’ that is not located in package ‘P’
cannot identify ‘(i,k)’.

e Let binding ‘(i,k)’ be associated with a defining occurrence of ‘i’ located in class
‘A’ within package ‘P’ and marked private. Let ‘C’ be a subclass of ‘A’. An applied
occurrence of ‘i’ within the body of ‘C’ cannot identify ‘(i,k)’ if ‘C’ or any class ‘B’
that is a superclass of ‘C’ and a subclass of ‘A’ is not located in package ‘P’.

Here’s how a private directive is used to avoid the ambiguity that occurred in clash.nl:
private.nl[125]|==
import fsm.x*;
import random.*;
{ int count = 0;
state = 0;
while (state != 7) {
if (ran() < 0.25) advance(l);
else if (ran() < 0.8) advance(2);
else advance(3);
count = count + 1;

package fsm;
int state;
void advance(int input) {
if (input == 1) state = state - 1;
else if (input == 2) state = state + 1;

Chapter 6: Selecting Acceptable Bindings 67

package random;

private int state = 100001;

float ran() {
state = state *x 125;
state = state - (state / 2796203) * 2796203;
return state / 2796203.0;

}

This macro is attached to a non-product file.

The access rules describing the private directive have no effect on the structure of
the generic lookup algorithm; there are still two available bindings in private.nl for the
applied occurrence of state on line 4. In order to handle access rules, the generic lookup
algorithm invokes one of three functions whenever it finds a binding at a scope graph node
n (see Section “Is the binding acceptable?” in Name Analysis Reference Manual). Which
of the three is invoked depends on the context in which the search was undertaken and the
state of the search:

isAcceptableSimple(DefTableKey def, DefTableKey app)
is invoked in a search for a simple identifier when n is the initial node or a node
reached by following a parent edge.

isAcceptableQualified(DefTableKey def, DefTableKey app)
is invoked in a search for a qualified identifier when n is the initial node.

isAcceptablePath(DefTableKey def, DefTableKey app, int kind)
is invoked in a search for a simple identifier or a qualified identifier when n is
the tip of a path edge with label kind.

The def argument is the available binding, and app is the UseKey of the applied occurrence
(see Section “Applied Occurrences” in Name Analysis Reference Manual).

A default version of each of these functions, which finds any binding acceptable, is
available in the library; the appropriate default version will be used unless the developer
overrides it by specifying a C-coded function. As developers, we implement the access rules
describing the effect of a private directive by providing appropriate implementations for
these functions.

Recall that the first two arguments to these functions are definition table keys. Those
keys must have properties that will allow the functions to make the appropriate decision
(see Section “The Definition Table Module” in Property Definition Language).

Properties and property computations[126]==

InPackage: DefTableKey; /* Enclosing package */

IsPrivate: int; /* 1 if the available binding is private */

This macro is defined in definitions 79, 94, 126, 132, 143, and 148.

This macro is invoked in definition 80.

If a binding is found for a simple name in an initial node or a node reached by following

a parent edge, then the applied occurrence lies in the range of the defining occurrence. The
range of a defining occurrence does not cross a package boundary, so the binding will always
be acceptable. We can therefore use the default isAcceptableSimple.

68 Tutorial for Name Analysis Using ScopeGraphs

If the initial node is a qualifier, a binding found for the qualified identifier will not
be acceptable if the applied occurrence is not in the same package as the defining occur-
rence. This condition is checked by the following computation, which is common to both
isAcceptableQualified and isAcceptablePath:

Common private access check[127]==

if (!GetIsPrivate(def, 0)) return AcceptBinding;
defpkg = GetInPackage(def, NoKey);

apppkg = GetInPackage(app, NoKey);

if (defpkg != apppkg) return IgnoreSkipPath;

This macro is invoked in definitions 128 and 130.

If the available binding isn’t private, then it is acceptable. If the available binding and
the applied occurrence are not in the same package, then the binding is not acceptable.
The function returns IgnoreSkipPath in that case because, although the binding is not
acceptable, it hides any other bindings for the same identifier along the current search path
(see Section “Is the binding acceptable?” in Name Analysis Reference Manual).

At the end of this computation, we know that the entity is private, and that its defining
occurrence is in the same package as the applied occurrence. That information is sufficient
to accept a binding for a qualified identifier at the initial node:

Check acceptability of a qualified identifier[128]|==

int
isAcceptableQualified (DefTableKey def, DefTableKey app)
{ DefTableKey defpkg, apppkg;

Common private access check[127]

return AcceptBinding;

}

This macro is invoked in definition 138.
Let’s see how this works on a contrived example:
accessPack.nl[129]==
{1}

package P;
class A { private int x, y; } /* package access */
class B {
class C extends A {
void £ { x =y; } /* legal */
}
class D extends Q.F {
void g0 { x = A.y; } /x illegal x */
}
}

package Q;
class F extends P.A {
void h() { x = P.A.y; } /* illegal x, y */

Chapter 6: Selecting Acceptable Bindings 69

}

This macro is attached to a non-product file.

First consider the qualified name A.y in method g. The generic lookup finds a binding for
the qualified identifier y in the node for the members of class A, which is the initial node of
the search. It therefore invokes isAcceptableQualified, and the arguments would have
the following properties:

IsPrivate attribute of def =1
InPackage attribute of def =P
InPackage attribute of app = P

You should verify that the result would be AcceptBinding.

Now consider the qualified name P.A.y in method h. The generic lookup finds the same
binding for the qualified identifier y, but this time the InPackage property of the app argu-
ment is Q. You should verify that isAcceptableQualified would return IgnoreSkipPath
in this case.

All of the applied occurrences of x in accessPack.nl must have their available bindings
checked by isAcceptablePath because each of those bindings is found at the tip of an
inheritance edge. The binding for the applied occurrence of x in method h can be rejected
by the common private access check, but that check will neither accept nor reject the
bindings for the applied occurrences in method f or method g.

Consider the applied occurrence of x in method g of class D. The generic search will find
the available binding in class A of package P, and that binding is marked private. D is a
subclass of F, and F is a subclass of A. Class F does not lie in package P. According to the
scope rules of NameLan, this means that the applied occurrence of x in method g cannot
identify the binding in class A.

An inheritance path consists of a sequence of scope graph nodes owned by classes. The
scope graphs module provides a function, CheckPathsNsp, that visits every node in the
path defined by a starting node, an ending node, and a kind of path edge (see Section
“Useful graph operations” in Name Analysis Reference Manual). The fourth argument of
CheckPathsNsp is a user-defined function that CheckPathsNsp invokes at each node visit,
passing the definition table key of the owner of the node being visited.

In order to verify accessibility of a binding that is neither accepted nor rejected by
the common private access check, isAcceptablePath must verify that all nodes of the
inheritance path are owned by classes within the package containing its declaration:

Check acceptability at the tip of a path edge[130]==

int
isAcceptablePath (DefTableKey def, DefTableKey app, int lab)
{ DefTableKey defpkg, apppkg;
Common private access check[127]
pkg = defpkg; /* defpkg is set by the Common private access check */
if (!CheckPathsNsp(
GetInClassNode(app, NoNodeTuple),
GetInClassNode(def, NoNodeTuple),
lab,
ChkClass))
return IgnoreSkipPath;

70 Tutorial for Name Analysis Using ScopeGraphs

return AcceptBinding;
b

This macro is invoked in definition 138.

ChkClass is the function that CheckPathsNsp uses to verify that a class on the inheritance
path is in the package containing the declaration. It requires a global variable pkg, which
must be set before the path is scanned:
Call-back function to verify inheritance paths[131]==

int

ChkClass (DefTableKey cls)

{ if (GetInPackage(cls, NoKey) == pkg) return 1;

return O;

3

This macro is invoked in definition 138.

In order to specify the beginning of the inheritance path for a particular binding, we
need to know the scope graph node owned by the class containing the applied occurrence
of the identifier being sought; the end of that inheritance path is the scope graph node
containing the binding. The necessary information can be provided by an InClassNode
property for each identifier occurrence:

Properties and property computations[132]==

InClassNode: NodeTuplePtr;
This macro is defined in definitions 79, 94, 126, 132, 143, and 148.
This macro is invoked in definition 80.

Let us now consider how the properties that we have defined are set. We will use the class
symbol DeclContext to abstract the two contexts, Declaration and DeclStmt, in which
entities are declared. A computation can then reach up to the enclosing DeclContext for an
attribute, private, indicating whether there was a private directive. In most cases there
will be no such directive, so we provide a default computation for DeclContext.private:

Abstract syntazx tree[133]==

SYMBOL DeclContext: private: int;
SYMBOL DeclContext COMPUTE SYNT.private = O; END;

SYMBOL Declaration INHERITS DeclContext END;
SYMBOL DeclStmt INHERITS DeclContext END;

RULE: Declaration ::= ’private’ VarDecl COMPUTE
Declaration.private = 1;

END;

RULE: Declaration ::= ’private’ MethodDecl COMPUTE
Declaration.private = 1;

END;

RULE: Declaration ::= ’private’ ClassDecl COMPUTE

Declaration.private = 1;

Chapter 6: Selecting Acceptable Bindings 71

END;
This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.
For every defining occurrence that might be modified by a private directive, we need to
set the IsPrivate property of the Key. To avoid duplication, we will define the necessary
computation in a class symbol DeclaredName and use LIDO inheritance:

Abstract syntaz tree[134]==

SYMBOL VarDefName INHERITS DeclaredName END;
SYMBOL MethodDefName INHERITS DeclaredName END;
SYMBOL ClassDefName INHERITS DeclaredName END;

SYMBOL DeclaredName COMPUTE

SYNT.GotDefKeyProp +=

ResetIsPrivate(THIS.Key, INCLUDING DeclContext.private);

END;
This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,

65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,

112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.

Note the use of an accumulating computation for the void attribute GotDefKeyProp (see
Section “Accumulating Computations” in LIDO — Reference Manual). This guarantees that
the IsPrivate property is set before it can be used (see Section “Information access” in
Name Analysis Reference Manual).

A computation at each declaration sets the InPackage property of the entity being
declared to the key representing the package containing that declaration (see Chapter 3
[Libraries|, page 31).

Abstract syntax tree[135]==

SYMBOL DeclaredName COMPUTE
SYNT.GotDefKeyProp +=
ResetInPackage (
THIS.Key,
INCLUDING (PackageBody.ScopeKey, Collection.ScopeKey)) ;
END;
This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.

Four symbols in our abstract syntax represent applied occurrences. In every one of these
four contexts we need to set the InPackage property of the UseKey to the key representing
the package containing the applied occurrence. To avoid duplication, we define the necessary
computation in a class symbol AppliedName and use LIDO inheritance:

Abstract syntazx tree[136]==

SYMBOL AppliedName COMPUTE
SYNT.GotUseKeyProp +=

72 Tutorial for Name Analysis Using ScopeGraphs

ResetInPackage (
THIS.UseKey,
INCLUDING (PackageBody.ScopeKey, Collection.ScopeKey)) ;

END;

SYMBOL SimpleName INHERITS AppliedName END;
SYMBOL QualifiedId INHERITS AppliedName END;
SYMBOL SimpleWLName INHERITS AppliedName END;

SYMBOL QualifiedWLId INHERITS AppliedName END;
This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,

65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,

112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.
This macro is invoked in definition 11.

The computations to set the InClassNode property of the keys for the bindings and
applied occurrences are similar to the computations setting the InPackage property. In the
case of the InClassNode property, however, both defining and applied occurrences can lie
outside of class definitions.

Abstract syntazx tree[137]==

SYMBOL DeclaredName COMPUTE
SYNT.GotDefKeyProp +=
ResetInClassNode (
THIS .Key,
INCLUDING (ClassBody.Env, Collection.Env));
END;

SYMBOL AppliedName COMPUTE
SYNT.GotUseKeyProp +=
ResetInClassNode(
THIS.UseKey,
INCLUDING (ClassBody.Env, Collection.Env));
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153

This macro is invoked in definition 11.

The C functions must be combined and the global variable pkg provided:
AccCtl.c[138]==

#include "LangSpecFct.h"
#include "err.h"

DefTableKey pkg;
Check acceptability of a qualified identifier[128]
Call-back function to verify inheritance paths[131]

Check acceptability at the tip of a path edge[130]

This macro is attached to a product file.

Chapter 6: Selecting Acceptable Bindings 73

AccCtl.c is a specification file:
Specification files[139]==
AccCtl.c

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)AccCtl > .

None of these files will have write permission in your current directory. You will need to
add write permission in order to do the exercises.

1. Consider the role of the DeclStmt context in the NamelLan language design.
a. Do you think that it would be reasonable to use a private directive in this context?
Explain briefly.

b. If a private directive would never be used in the DeclStmt context, why do we
bother to have DeclStmt inherit DeclContext? (Hint: try deleting that inheri-
tance and building a processor.)

2. If a qualifier is the initial node, why is a binding found for the qualified identifier
acceptable if the applied occurrence is in the same package as the defining occurrence?

3. Draw the scope graph for accessPack.nl, and highlight the inheritance path for the
applied occurrence of x in method g.

4. Use Bindings.specs to generate a processor named acc that will show bindings for
applied occurrences.

a. Apply acc to private.nl and verify the bindings.
b. Apply acc to accessPack.nl and verify the bindings.
5. Add the following class to package P of accessPack.nl:

class E {
void i) { Q.F.x = A.y; }
}

a. List the available bindings for the applied occurrence x in method i. Can this
applied occurrence identify any of these bindings? Explain your answer using the
scope rules of NameLan.

b. Which of the isAcceptable functions will be called by the generic lookup for each
of the bindings in (a)? Explain briefly.

c. Briefly explain how the isAcceptable function reaches its decision in each case.

d. Apply acc to the modified file and verify the predicted behavior.

6.2 Position control

A method body or block consists of a sequence of statements and variable declarations. The
rules of NameLan only allow a reference to a variable declared in such a sequence to take

74 Tutorial for Name Analysis Using ScopeGraphs

the form of a simple name; it cannot be inherited or used in a qualified name. This means
that there is no mechanism by which the variable can be accessed outside of the method
body or block in which it was declared. We therefore call these variables local variables.

Local variable declarations may appear at arbitrary locations in a method body or block.
How should we interpret their meaning in relation to each other and to the statements in
that method body or block? The programmer might well consider the variable name to be
unknown before its declaration. As language designers, we could formalize that intuition:

e The scope of a defining occurrence VarDefName in a DeclStmt phrase begins at the
VarDefName and ends at the end of the smallest enclosing Block.

e No two defining occurrences VarDefName of the same identifier may have scopes that
end at the same point.

Note that the first rule applies only to the special case of a local variable. All other
VarDefName occurrences still obey the scope rules stated in earlier chapters. The second
rule applies to all VarDefName occurrences. It prevents multiple variable declarations in a
range (see Section 1.4 [Error reporting], page 12).

If a scope ends at the end of a Block phrase, the smallest abstract syntax subtree
encompassing that scope is the corresponding Block subtree. That subtree can be chosen
as the range of the scope, just as it would be the range of a VarDefName scope defined by the
rules of the kernel language (see Section “Basic Scope Rules” in Name analysis according
to scope rules). This means that the attribute computation seeking an available binding
is used for all applied occurrences in the Block subtree. However, if the available binding
is for a local variable, then it may not be acceptable due to the position of the applied
occurrence. Here’s a trivial example to show how the developer can use position control to
implement our new scope rule:

cscope.nl[140]==

int i;
{i=-42;
float i;
i = 42;
}

This macro is attached to a non-product file.

There are two variables named i in cscope.nl. The scope of the floating-point variable
declared on the third line begins at the end of that line, and ends at the closing brace on the
fifth line. Thus the applied occurrence on the second line does not have the same meaning
as the applied occurrence on the fourth line.

The search for a binding for the applied occurrence on the second line begins in the scope
graph node for the block. That scope graph node contains a defining occurrence on the
third line, which must be checked for acceptability. This binding is not acceptable because
the applied occurrence does not follow the defining occurrence in the text, and is therefore
not in the scope of that defining occurrence. The search must continue in the scope node
for the complete text, where an acceptable binding is available.

The search for a binding for the applied occurrence on the fourth line also begins in the
scope graph node for the program block. In this case the binding is acceptable, because the
applied occurrence follows the defining occurrence in the text and is therefore in the scope
of that defining occurrence.

Chapter 6: Selecting Acceptable Bindings 75

In order to compare positions of defining and applied occurrences, we use values of type
CoordPtr (see Section “Source Text Coordinates and Error Reporting” in The Eli Library).
By default, the CoordPtr value specifies the text line number and column index at which
the phrase begins.

Module computations set the Coord property of every IdDefScope.Key attribute to
the CoordPtr value for the phrase rooted in the IdDefScope node (see Section “Defining
Occurrences” in Name Analysis Reference Manual). Similar module computations set the
Coord property of every UseKey to the CoordPtr value for its phrase (see Section “Applied
Occurrences” in Name Analysis Reference Manual). We can override the default version
of isAcceptableSimple with a version that applies the function earlier to the Coord
properties of the keys for the defining and applied occurrences of a local variable to check
whether the binding found by the generic lookup is acceptable:

PosCtl.c[141]==
#include "LangSpecFct.h"

int
isAcceptableSimple (DefTableKey def, DefTableKey app)
{ if (GetIsLocal(def, 0)) {
CoordPtr defcoord = GetCoord(def, NoPosition);
CoordPtr appcoord = GetCoord(app, NoPosition);
if (learlier(defcoord, appcoord)) return IgnoreContinue;
}
return AcceptBinding;

}

This macro is attached to a product file.
See Section “Source Text Coordinates and Error Reporting” in The Eli Library, for the
details of the earlier function.
PosCtl.c is an additional specification:
Specification files[142]==
PosCtl.c

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

IsLocal is a property indicating that the entity is a local variable (see Section “The
Definition Table Module” in Property definition language).

Properties and property computations[143|==

IsLocal: int;

This macro is defined in definitions 79, 94, 126, 132, 143, and 148.
This macro is invoked in definition 80.

Here are computations that will establish the value of the IsLocal property of the key
of a local variable:

Abstract syntax tree[144]==
SYMBOL DeclContext: IsLocal: int;

76

Tutorial for Name Analysis Using ScopeGraphs

SYMBOL Declaration COMPUTE SYNT.IsLocal=0; END;
SYMBOL DeclStmt COMPUTE SYNT.IsLocal=1; END;

SYMBOL VarDefName COMPUTE
SYNT.GotDefKeyProp +=
ResetIsLocal (THIS.Key, INCLUDING DeclContext.IsLocal);
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises

These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:

-> $elipkg/Name/LearnSG)PosCtl >

None of these files will have write permission in your current directory.

1.

Use file Bindings.specs to generate a processor named loc that will show bindings
of applied occurrences, and apply it to cscope.nl, verifying that the bindings for the
applied occurrences are correct in both cases.

Program cscope.nl shows that, if a language allows the scope of a local variable to
be a part of a block, it is possible for two applied occurrences of a particular variable
identifier to have different meanings within that block. Many language designers con-
sider this to be bad programming style. Suppose that you decide to make processor
loc issue a message about this example of bad programming style (see Section “Error
Reporting” in Frame Library Reference Manual).

a. What severity would you use for that message? Explain briefly.

b. Alter the specifications given in this section to issue such a message. Generate a
new processor, rpt, from your modified specification. Test rpt on cscope.nl.

c. Delete the first line of cscope.nl and apply rpt to the resulting program. Is the
result what you expected? Do you think that the result is reasonable? Explain
briefly.

If you were not satisfied with rpt’s error reporting, carefully consider the placement
of the message call. Try to improve the result by saving some information
in isAcceptableSimple and using it as a condition for invoking message in
LookupComplete (see Section “Initialization and finalization” in Name Analysis
Reference Manual).

Test your improvements on both versions of cscope.nl.

7

7 Predefined Identifiers

Most programming languages use pre-defined identifiers to represent a few basic entities.
For example, it would be useful for NameLan to have a pre-defined class Object. The
effect would be as though the following class had a defining occurrence in the range of the
compilation:
class Object {
int hashCode() { }
}

Object would act as the direct superclass of any class that did not specify a direct
superclass. The result would be that Object is a superclass of every class, and all classes
inherit the entities declared in Object unless those entities are hidden. A variable of type
Object could hold a reference to an object of any class. Here is a program that uses these
properties:

object.nl[145]|==

class C {
int h() { hashCode(); }
}

class D { }

{ C c; c.hashCode();
D d; d.hashCode();
Object o; o.hashCode();
}

This macro is attached to a non-product file.
This chapter explains how to extend NameLan with a pre-defined Object superclass.

Pre-defined identifiers have no actual defining occurrences in the program text, so their
bindings must be created by the generated processor. Eli provides a module (SGPreDefId)
to support specification of pre-defined identifiers (see Section “Pre-defined Identifiers” in
Name Analysis Reference Manual).

The developer needs to instantiate SGPreDefId with the instance parameter that was
used in the instantiation of the ScopeGraphs module in which the pre-definitions must be
implemented. The scope rules for both the pre-defined class Object and the entities declared
in its body are implemented by the set of four isomporphic scope graphs discussed in Section
5.1 (see Section 5.1 [Reusing identifiers in the same scope], page 55). Those scope graphs are
supported by our first instantiation of the ScopeGraphs module (see Section “Basic Scope
Rules” in Name analysis according to scope rules). That instantiation carried no instance
parameter, so we also instantiate the SGPreDefId module with no instance parameter:

Specification files[146]==
$/Name/SGPreDefId.gnrc +referto=(Predef.d) :inst

$/Tech/MakeName. gnrc +instance=Ident :inst

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.
This macro is invoked in definition 13.

78 Tutorial for Name Analysis Using ScopeGraphs

We use the operations provided by SGPreDefId to pre-define two identifiers, Object and
hashCode, and the scope graph node tuple owned by the class Object. Each predefinition
is established by an appropriate macro call (see Section “Pre-defined Identifiers” in Name
Analysis Reference Manual).

Object The identifier Object is bound to the known key ObjectKey in the root envi-
ronment of the scope graph for classes:

Scope graph node
The NodeTuplePtr value defining the environment of the class Object is created
and assigned to ObjectEnv:

hashCode The identifier hashCode is bound to the known key hashCodeKey in the
ObjectEnv environment of the scope graph for methods:

The three macro calls appear in the file whose name was given by the SGPreDefId
instantiation’s referto parameter:

Predef.d[147]==

PreDefKeyNdx ("Object", ObjectKey, classGraph)
PreDefNode (ObjectKey, ObjectEnv)
PreDefKeyEnvNdx ("hashCode", hashCodeKey, ObjectEnv, methodGraph)

This macro is attached to a non-product file.

The developer must define ObjectKey and hashCodeKey as known keys, with appropriate
properties set (see Section “How to declare properties” in Property definition language).

Properties and property computations[148|==

"ScopeGraphs.h"

ObjectKey -> GraphIndex={classGraph}, IsType={1};

hashCodeKey -> GraphIndex={methodGraph};

This macro is defined in definitions 79, 94, 126, 132, 143, and 148.

This macro is invoked in definition 80.
See Chapter 5 [Multiple Scope Graphs|, page 55, for the GraphIndex property. See
Section 4.1 [Connect to the Typing module], page 44, for the IsType property.

ObjectEnv is a NodeTuplePtr-valued variable that will hold the generated node tuple
owned by the class Object (see Section “Pre-defined Identifiers” in Name Analysis Reference
Manual). The developer must establish this variable in a C file and provide an appropriate
header file:

Predef.c[149]==

#include "Predef.h"
NodeTuplePtr ObjectEnv; /* Establish the variable ObjectEnv */

This macro is attached to a product file.

Predef.h[150]==

#ifndef PREDEF_H /* Prevent multiple inclusions */
#define PREDEF_H

#include "Model.h" /* Define the NodeTuplePtr type */
extern NodeTuplePtr ObjectEnv;

#endif

This macro is attached to a product file.

Chapter 7: Predefined Identifiers 79

ObjectEnv will be referred to in generated code, so the developer needs to ensure that
Predef.h is included in that generated code (see Section “Implementing Tree Computa-
tions” in LIDO — Computations in Trees).

Predef.head[151]==
#include "Predef.h"

This macro is attached to a product file.
These three files are all additional specifications:
Specification files[152]|==

Predef .head

Predef.h

Predef.c

This macro is defined in definitions 12, 16, 23, 27, 74, 78, 81,
91, 117, 121, 139, 142, 146, and 152.

This macro is invoked in definition 13.

This completes the pre-definition of Object. We now need to establish path edges to
Object from each class using the default inheritance (see Chapter 2 [Classes|, page 19).
The relevant abstract syntax is:

RULE: Inheritance ::= Default END;
RULE: Default 1= END;
The computation is close to that for specific super classes (see Section 2.2 [Inheritance],

page 24). It uses the BoundEdge role instead of the WLCreateEdge role because the edge tip
is known (see Section “Path edge creation roles” in Name Analysis Reference Manual).
Abstract syntazx tree[153]==
SYMBOL Default INHERITS BoundEdge COMPUTE
SYNT.tailEnv = INCLUDING Inheritance.SubClassEnv;
SYNT.tipEnv = ObjectEnv;
END;

This macro is defined in definitions 10, 18, 22, 38, 47, 52, 53,
65, 69, 71, 88, 89, 92, 93, 95, 96, 101, 105, 108, 110, 111,
112, 113, 122, 133, 134, 135, 136, 137, 144, and 153.

This macro is invoked in definition 11.

Exercises
These exercises are based on files defined in the Tutorial. To obtain copies of those files in
your current directory, enter Eli and give the following command:
-> $elipkg/Name/LearnSG/Predef > .
None of these files will have write permission in your current directory.

1. Draw the scope graph that will be created for object.nl. Which nodes and edges were
created by the pre-definition module?

2. Use file Bindings.specs to generate a processor named pd that will show bindings for
applied occurrences, and apply it to object.nl. Is the result what you expected?

3. Why does pd not report applied occurrences of the predefined identifiers Object and
hashCode?

8 Index

A

Abstract syntax of identifiers.... 5, 15, 19, 21,
26, 32, 63

Abstract syntax tree.... 5, 11, 13, 23, 28, 32, 38,
40, 41, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 64, 70,
71, 72,75, 79

AccCtl.c....iiiiiiiiii i 72
AccessNodesFromQualifier.c.................. 48
accessPack.nlol 68
Add the path edge to thegraph............... 51
ambig.nl 59
Applied occurrence of a type identifier..... 46
Attribute referencing an entity.............. 9
Attribute representing an identifier........ 8

B

Bindings.specsl 11

C

Call-back function to verify

inheritance paths.......................... 70
Check acceptability at the tip

of apathedge........................... ... 69
Check acceptability of a

qualified identifier....................... 68
clash.nl 65
Common private access check.................. 68
Construct defining one or more

entities of the same type.................. 46
Construct that represents a subtree

denoting atype.............. ...l 45
cscope.nll 74

D

Defining occurrence of a type identifier ... 46
Defining occurrence of an identifier

foratypedentity......................... 46
demand.nl...........ciiiiiiiiii 38
DisambiguateGraphs.c........................ 61

E

edges.nl i 25
Ensure that types are defined................ 50
Establish a path edge to a superclass....... 27
Establish the ownership relation............ 21
Establish the Type attribute of Type........ 45

expr.nl 43

81

G

Implementation of the NameLan
reclassification.................... 61
Inherit the appropriateroles............... 35

machar.nl ...ttt 1
Make contexts of complete

names explicit........... 23, 27, 35, 39, 44, 50
Mappings from concrete symbols to

abstract symbolsoiiiiiiian, 4
maxsum.nloo. 62
mged.nl ... 55

NameLam.COMuuiiiiiiee i 2
NameLan.gla........ovvuiiiiiiiiinnnnniinnnn..n. 2
NameLan.lido...................oiiiiiaa, 5
NameLam .maP . .« vvvv e vttt et eneeenns 4
NameLan .pdl.........covieiinuiiieinnnnneennnnnn 45
NameLan.SpecCS......ouvuiiiiiiiieiiieeaann, 6

@)

object.nl. ...l 77

82 Tutorial for Name Analysis Using ScopeGraphs

P

Partition the program analysis 51, 52
Phrase structure..... 2,14, 19, 20, 26, 31, 34, 39,

43, 50, 62, 66
PRg.nl. ... 31
PosCtl.c ... 75
Predef.c.........oiiiiiiiii i 78
Predef.d.......... il 78
Predef . h......cooiiiiiiiiiiiiiiiiii 78
Predef.head............. il 79
private.nl.........l 66

Properties and property computations... 45, 49,
67, 70, 75, 78

Q

Qualified names lookup in complete graphs .. 22

R

random.nl ... 19
Report a collision error in a

single import.............l 37
Report a multiply-defined identifier....... 13

Report an undefined identifier.............. 12

S

ScopeGraphs.hl 42
ScopeGraphs.h content 41, 56
Set WLInsertDef attributes............... 36, 37
single.nl........l 33

Specification files.. 6,9, 13, 15, 42, 44, 45, 48,

62, 63, 73, 75, 77, 79
Specify the Key attribute of a WLName....... 27
Specify worklist computations............... 26

T

TeXt.SPeCS ..ttt 3
Tree nodes playing ScopeGraphs roles........ 10

	1 Kernel Language
	Text structure
	Exercises

	Tree Structure
	Exercises

	Basic name analysis
	Exercises

	Error reporting
	Exercises

	Procedures
	Exercises

	2 Classes
	Exercises
	Qualified names
	Exercises

	Inheritance
	Exercises

	3 Libraries
	Exercises
	Single import
	Exercises

	Import on demand
	Exercises

	4 Interaction with Type Analysis
	Connect to the Typing module
	Type-qualified entity names
	Exercises

	Type-qualified edge names
	Exercises

	5 Multiple Scope Graphs
	Reusing identifiers in the same scope
	Exercises

	Constructs obeying different scope rules
	Exercises

	6 Selecting Acceptable Bindings
	Access rules
	Exercises

	Position control
	Exercises

	7 Predefined Identifiers
	Exercises

	8 Index

