Solutions of common problems

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

Table of Contents

... 1
1 Error Reports.......... 3
2 String Concatenation 5
3 Counting Symbol Occurrences 7
4 Generating Optional Identifiers................ 9
5 Computing a Hash Value...................... 11
6 Sorting Elements of an Array................. 13
7 Character String Arithmetic.................. 15

This library contains the following modules:

Message
Strings
Counter
MakeName
Sort

StrArith

Error Reports (module deleted)
String Concatenation

Counting Symbol Occurrences
Generating Optional Identifiers
Sorting Elements of an Array

Character String Arithmetic

1 Error Reports

This module is NOT supported anymore.
Uses of the two macros Message and MessageId that were provided by this module have
to be rewritten, since LIGA does NOT allow to hide accesses of COORDREF.

A macro call Message (s, t) can be rewritten message(s, t, 0, COORDREF).
A macro call MessageId(s, t, sym) can be rewritten
message (s, CatStrInd(t, sym), O, COORDREF)
where CatStrInd is a macro that stores the concatenation of two strings. It is provided
by the module (see Chapter 2 [Strings]|, page 5):
$/Tech/Strings.specs

2 String Concatenation

This module provides functions for concatenation of strings, and the name CharPtr for the
type char *.

The module is instantiated by

$/Tech/Strings.specs

All entities exported by this module can be used in specifications of type .lido, .init,
.finl, and .con. They can also be used in .pdl specifications or in C modules if the
interface file Strings.h is imported there.

The module defines the type name CharPtr for char *, especially to be used in LIDO
specifications.

The module exports the functions

CharPtr CatStrStr (CharPtr s1, CharPtr s2)
The strings s1, s2 are concatenated. The resulting string is stored in the string
memory of the csm module, and the pointer to it is returned.

int IndCatStrStr (CharPtr si1, CharPtr s2)
The strings s1, s2 are concatenated. The resulting string is stored in the string
memory of the csm module, and its StringTable index is returned.

A macro CatStrInd(s,i) is exported it obtains the second of the concatenated strings
by the index i into the StringTable. This macro is used to simplify composition of message
texts.

3 Counting Symbol Occurrences

This module provides .lido computations that count all ocurrences of certain symbols
within a certain subtree.

The module is instantiated by
$/Tech/Counter.gnrc +instance=NAME :inst
The optional generic instance parameter NAME identifies the particular instance.
The module provides the following computational roles:

NAMECount is associated to the grammar symbols that shall be counted.
NAMECount . NAMECount yields the occurrence number in the tree.

NAMERootCount specifies the subtree containing the NAMECount occurrences.
The number of occurrences found in the subtree can be obtained by the attribute
NAMERootCount . NAMECountResult.

The default is that counting starts from 1 and is incremented by 1. The start value can be
adjusted by overriding the computation NAMERootCount . NAMEInitCount = 0; with a com-
putation of a suitable value. The increment can be adjusted by overriding the computation
of NAMECount . NAMEIncrement.

INAME | RootCount is inherited by the grammar root by default.

NAMERootCount can be associated to recursive grammar symbols. Any symbol that has
NAMECount associated must belong to a subtree such that NAMERootCount is associated to
its root.

4 Generating Optional Identifiers

This C module implements functions that turn their arguments into strings which then play
the role of identifiers as if they occurred in the input, i.e. they are entered in the identifier
table, and their symbol code is returned.

The module is instantiated by
$/Tech/MakeName.gnrc +instance=IDENT :inst

The generic instance parameter IDENT has to be set to the terminal symbol used for iden-
tifiers.

The module can also be used to generate and store identifiers in processors that do not
have a scanner and a parser. In this case the +instance parameter has to be omitted.

All entities exported by this module can be used in specifications of type .1lido, .init,
.finl, and .con. They can also be used in .pdl specifications or in C modules if the
interface file MakeName.h is imported there.

The module exports the following functions:

int MakeName (char *c)
c is a character string that may coincide with an already existing name. The
result the is the encoding of the name c.

int GenerateName (char *c)
c is a character string. The name is generated by appending a number to the
prefix ¢ such that the name is different from all others encountered so far (on
input and generated).

int IdnNumb (int id, int num)
id is the encoding of an existing identifier; num is a nonnegative number. The
new name is formed by appending the number to the identifier string. It may
coincide with an already existing name. This function may be used to derive
arbitrary names from existing ones.

int PreIdnPost (char *pre, int id, char *post)
id is the encoding of an existing identifier, pre and post are arbitrary character
strings. The generated name is formed by catenation of pre, the identifier string
and post. It may coincide with an already existing name. This function may
be used to derive different names (e. g. for different target objects) from an
existing name.

11

5 Computing a Hash Value

This C module computes a 32-bit hash of the contents of specified memory. Every bit of
the memory contents affects every bit of the hash. The probability that the same hash will
be computed for different memory contents is very low.

The module is instantiated by
$/Tech/Hash. specs

All entities exported by this module can be used in specifications of type .lido, .init,
and .finl. They can also be used in C modules if the interface file hash.h is imported
there.

The module exports the following entities:

ubl A typedef identifier defining an unsigned byte. The memory over which a hash
is to be computed is made up of a set of contiguous blocks of ub1 values.

ub4 A typedef identifier defining an unsigned 32-bit value. The hash computed is a
single ub4 value.

ub4 hash(ubl *block, size_t length, ub4 previous)
A function computing a hash value. The ‘block’ argument is a pointer to a con-
tiguous sequence of ‘length’ unsigned bytes; ‘previous’ is the hash computed
from other contiguous sequences in the specified memory area. (If ‘block’ is
the first sequence of the area, ‘previous’ should be ‘0’.) The result of hash is
a hash of all of the contiguous sequences considered so far.

In the simplest case, we need to compute a hash for the contents of a single contiguous
block of memory. For example, here is a call to compute a hash of a single string pointed
to by ‘str’:

hash(str, strlen(str), 0)

A more complex situation is when there are several related areas of memory, and we
need to compute a single hash for all of them. Suppose that there was a pair of strings,
pointed to by ‘strl’ and ‘str2’, which constituted a conceptual unit. Here are two ways
to compute a single hash for the pair:

hash(strl, strlen(stril), hash(str2, strlen(str2), 0))
hash(str2, strlen(str2), hash(strl, strlen(strl), 0))

Either of these sequences would be perfectly satisfactory, but the resulting values would
differ.

When computing the hash of an array or structure, it is important to realize that there
may be padding with unknown content involved. Consider the following variable declara-
tion:

struct{ char c; int i; } foo, bar;

On some machines, the compiler may insert three bytes of padding between the end of
field ‘c’ and the beginning of field ‘i’. There is no guarantee that these three bytes will
be initialized in a particular way. Thus ‘hash(foo, sizeof(foo), 0)’ and ‘hash(bar,
sizeof (bar), 0)’ may not yield the same result when ‘foo’ and ‘bar’ have identical field
values; the hash also depends on the contents of the padding. Unless you know that there

12 Solutions of common problems

is no padding present, or that padding is always intialized in the same way, the only safe
approach is to hash the fields as separate memory areas:

hash (foo.c, sizeof(foo.c), hash(foo.i, sizeof(foo.i), 0))

13

6 Sorting Elements of an Array

This C module implements a function that sorts the elements of an array in place. It uses
the O(n log n) Heapsort algorithm.
The module is instantiated by
$/Tech/Sort.gnrc +instance=TYPE +referto=HDR :inst
where TYPE is the name of the array element type and HDR.h is a file that defines the array
element type, e.g.
$/Adt/Sort.gnrc+instance=DefTableKey +referto=deftbl :inst
If the element type is predefined in C the referto parameter is omitted, e.g.
$/Adt/Sort.gnrc+instance=int :inst

All entities exported by this module can be used in specifications of type .1lido, .init,
.finl, and .con. They can also be used in .pdl specifications or in C modules if the
interface file SortTYPE.h is imported there.

The module exports the following function:

void SortTYPE (TYPE *arr, size_t n, TYPECmpFctType cmp)
arr points to the array to be sorted, which contains n elements. cmp is the
function that defines the collating sequence for the elements. It’s signature is
TYPE, TYPE -> int; it yields -1 if the left argument should precede the right in
the sorted array, +1 if the left argument should follow the right in the sorted
array, and 0 if the order of the elements in the sorted array is immaterial.

15

7 Character String Arithmetic

StrArith is a wrapper for the strmath library routines (see Section “Character String Arith-
metic” in Library Reference Manual). It is instantiated by

$/Tech/StrArith.gnrc +instance=NAME +referto=BASE :inst

where NAME is a prefix for the operator names and BASE is the radix of the numbers to be
manipulated. If the instance parameter is omitted then the operator names have an empty
prefix; if the referto parameter is omitted then the radix is 10.

All operations exported by this module can be used in specifications of type ‘.lido’, *.init’,
and ‘.fin’. They can also be used in C modules if the interface file ‘NAMEStrArith.h’ is
imported there.

Strings representing numbers are all stored in the string table. Their form is common

in programming languages:
[+/-1[d*][.]1[d*] [e[+/-1dx*]

Here [] indicate optional parts, +/- indicates that a sign may be present, d indicates digits
in the chosen radix, and * indicates repetition. The optional dot separates the integer and
fractional parts of a number, and e stands for an exponent marker. The actual characters
used to represent digits, signs, fractional separators and exponent symbols are determined
by default or by settings established by the strmath operation (see Section “Character
String Arithmetic” in Library Reference Manual).

An instantiation of StrArith with instance parameter NAME provides the following op-
erations:

int NAMEStrAdd(int left, int right)

int NAMEStrSub(int left, int right)

int NAMEStrMul (int left, int right)

int NAMEStrDiv(int left, int right)

int NAMEStrQuo(int left, int right)

int NAMEStrRem(int left, int right)

int NAMEStrExp(int left, int right)
Dyadic arithmetic operations. The two arguments are string table indices rep-
resenting the left and right operands. The result is the string table index of a
string representing the result.

NAMEStrDiv is a real division, possibly yielding a result with a fractional part.
NAMEStrQuo yields the integer quotient from the division and NAMEStrRem yields
the integer remainder from the division. NAMEStrExp raises the first operand
to the power given by the second operand.

int NAMEStrNeg(int opnd)

int NAMEStrSqrt(int opnd)
Monadic arithmetic operations. The argument is a string table index represent-
ing the operand. The result is the string table index of a string representing
the result.

int NAMEStrNorm(int opnd, int oldradix, int newradix, char *symbs)
Normalizes a value, performing radix conversion if necessary. The first argu-
ment is a string table index representing the operand. The second and third

16 Solutions of common problems

arguments are the radix values for the conversion. The result is the string table
index of a string representing the result. Its format depends on the content of
the fourth argument:

symbs=0 Whole number and fraction parts separated by the defined frac-
tional separator unless the result can be expressed as an integral
value, exponent marker and exponent if the length would exceed
integer_size digits.

symbs="" Sequence of digits if the length does not exceed integer_size dig-
its, otherwise the empty string (which is represented by string table
index 0).

symbs=non-empty quoted string
A fractional separator is guaranteed to appear in the result. The
first character of the string is taken as the exponent marker. If there
are additional characters in the string, then they will be taken as the
fractional separator, the minus sign, and the plus sign respectively.
(The characters normally defined for these purposes will be used if
the corresponding character does not appear in the string.)

Here is a fragment of a specification for a calculator that uses StrArith to implement
the arithmetic:

ATTR val: int;

RULE: Program ::= Expr COMPUTE
printf ("%s\n", StringTable(Expr.val));

END;

RULE: Expr ::= Expr ’+’ Expr COMPUTE
Expr[1].val=StrAdd(Expr[2].val,Expr[3].val);

END;

RULE: Expr ::= ’-’ Expr COMPUTE
Expr[1] .val=StrNeg(Expr[2].val);

END;

RULE: Expr ::= ’sqrt’ ’(’ Expr ’)’ COMPUTE
Expr[1].val=StrSqrt (Expr[2].val);

END;

RULE: Expr ::= Constant COMPUTE
Expr.val=Constant;

END;

StrArith was instantiated without parameters for this example:
$/Tech/StrArith.gnrc :inst

Index

A

arithmetic on character strings............. 15
attribute Count............... ..., 7
attribute CountResult......................... 7
attribute Incrementc..... 7
attribute InitCount 7

C

CatStrInd......... 3,5
CatStrStr.. .. 3,5
character string arithmetic................. 15
CharPtr 5
Count . ..o ot 7

@rTOT MESSAGES . ..o i vttt e eiite i 3

G

GenerateName.............cciiiiininennennnnnn. 9

TdnNumb ... 9
IndCatStrStr. ... 5

17

L

MakeNameovviiete et 9
MESSAZE « o oo ittt e et 5
MESSAZES « oot vve ettt ettt iiiiie e 3
Module Counter..........c.ooviuieinneinneinnennn. 7
Module Hashcoiiiiiiinii i, 11
Module MakeName..........ouuveinnenneennennnnnn 9
Module Message...............c.oiiiiiiiiiiii... 3
Module SOrtoviiiin i 13
Module StrArith.......... .o, 15

P

PreldnPosSt .. .ottt e 9

R

RootCountottt 7

S

Solutions of Common Problems.................. 1
SortTYPE 13
Strings ... 5
strings as numbers................... 15

	
	1 Error Reports
	2 String Concatenation
	3 Counting Symbol Occurrences
	4 Generating Optional Identifiers
	5 Computing a Hash Value
	6 Sorting Elements of an Array
	7 Character String Arithmetic
	Index

