Tasks related to generating output

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

Table of Contents

1 PTG Output for Leaf Nodes

2 Commonly used Output patterns for PTG....

3 Indentation..................,
4 QOutput String Conversion.....................
5 Pretty Printing..........

6 Typesetting for Block Structured Output. ...

7 Processing Ptg-Output into String Buffers. ..

8 Introducing Separators in PTG Output......

11

13

15

17

This library contains the following modules:
LeafPtg PTG Output for Leaf Nodes

PtgCommon
Commonly used Output patterns for PTG

Indent Indentation for PTG Output
OutStr Output String Conversion

PrettyPrint
PrettyPrinting for PTG Output

BlockPrint
Typesetting for Block-Structured Output

StringOut
Process PTG-Output into string buffers

Separator
Introducing Separators in PTG Output

1 PTG Output for Leaf Nodes

The module LeafPtg provides some standard translations of terminal input strings into out-
put strings. They may be attached to nonterminal symbols having an int valued attribute
Sym which represents a string, an identifier or a number. That symbol usually derives to a
terminal symbol which is used to compute the value of the Sym attribute.

The module does not have generic parameters. It is used by writing
$/0Output/LeafPtg.fw
in a .specs file.

The computations of this module yield an attribute Ptg of type PTGNode representing
the desired output string. It may be used to compose more complex output structures.

The required computation of the Sym attribute can be specified by (if not already done
for other purposes):

ATTR Sym: int;
SYMBOL T COMPUTE SYNT.Sym = TERM; END;

There are the following symbol roles for different output representations:
SYMBOL T INHERITS IdPtg END;

T.Sym must refer to an identifier or a string then T.Ptg represents the same identifier or
character sequence of the string in the output.

SYMBOL T INHERITS CStringPtg END;
T.Sym must refer to a string, then T.Ptg represents its value as a C string literal.
SYMBOL T INHERITS PStringPtg END;
T.Sym must refer to a string, then T.Ptg represents its value as a Pascal string literal.
SYMBOL T INHERITS NumPtg END;
T.Sym must represent an integral number, then T.Ptg represents that number.
The module uses some PTG patterns from the module PtgCommon.

Please note that this module may become outdated in future Eli-Versions. In new
specifications use the module PtgCommon directly to create PTG representations for terminal
symbols. The module PtgCommon is described in the next section.

2 Commonly used Output patterns for PTG

The module PtgCommon provides definitions for frequently used PTG patterns. These pat-
terns fall into two categories: The first one supports different types of output leaves; the
second contains frequently used patterns for building sequences.

The module does not have generic parameters. It is used by including
$/0utput/PtgCommon. fw
in a .specs file.

The module introduces PTG specifications for patterns named Id, AsIs, CString,
PString, CChar, Numb, Seq, CommaSeq. When using PtgCommon . fw these names must not
be specified in any other PTG specification.

The functions provided by this module may be used in .1lido specifications or in .c files.
To introduce prototypes for the defined functions, use the header file PtgCommon.h.

Frequently Used Patterns

The module PtgCommon provides useful and commonly used PTG patterns, especially for
the output of non-literal terminal symbols. They are documented both by showing their
PTG pattern definitions and the signature of the resulting pattern functions:

Pattern: Id: [PtgOutId $ int]

Resulting Function: PTGNode PTGId(int id)
The argument id must refer to an identifier or a string stored in the charac-
ter storage module of Eli, see Section “Character Storage Module” in Library
Reference Manual. The PTG pattern produces the same identifier or character
string in the output.

Pattern: AsIs: $ string

Resulting Function: PTGNode PTGAsIs(char *string)
The PTG pattern produces the specified argument string in the output. The
character string is not copied, only the pointer is.

Pattern: Numb: $ int
Resulting Function: PTGNode PTGNumb(int numb)
The PTG pattern produces the given integral number.

Pattern: CString: [CPtgOutstr $ string]

Resulting Function: PTGNode PTGCString(char *string)

and PTGNode PTGCStringId(int id)
The argument is a string. The PTG pattern function produces the same char-
acter string quoted according to the rules of the C language. PTGCStringId
is macro based on PTGCString. It takes an index into the character storage
module of Eli, see Section “Character Storage Module” in Library Reference
Manual. It produces the string stored there quoted according to the rules of
the C language..

6 Tasks related to generating output

Pattern: PString: [PPtgOutstr $ string]

Resulting Function: PTGNode PTGPString(char *string)

and PTGNode PTGPStringId(int id)
The argument is a string. The PTG pattern function produces the same charac-
ter string quoted according to the rules of the Pascal language. PTGPStringId
is macro based on PTGPString. It takes an index into the character storage
module of Eli, see Section “Character Storage Module” in Library Reference
Manual. It produces the string stored there quoted according to the rules of
the Pascal language..

Pattern: CChar: [CPtgOutchar $ int]
Resulting Function: PTGNode PTGCChar(int c)
The PTG pattern produces the specified value as C character literal.

Pattern: Seq: $ $

Resulting Function: PTGNode PTGPSeq(PTGNode, PTGNode)
Takes two arguments and yields a new node that prints the concatenation of
the given patterns.

Pattern: CommaSeq: $ { ", " } $

Resulting Function: PTGNode PTGPCommaSeq(PTGNode, PTGNode)
Takes two arguments and yields their concatenation separated by a comma. By
enclosing the separator with braces, it is assured that a comma will be printed,
only if none of the arguments refers to the predefined value PTGNULL that yields
an empty output. This makes the pattern well suited to be used in conjunction
with the CONSTITUENTS construct. See Section “Optional Parts in Patterns” in
Pattern-based text generator, for details.

Pattern: Eol: $ "\n"

Resulting Function: PTGNode PTGEol (PTGNode)
This pattern attaches a newline at the end of the given text. Note that the
PTG output functions do not automatically put a newline at the end of the
output.

Useful Embedded Functions

The functions embedded in the PTG patterns defined in PTGCommon.fw (See [Frequently
Used Patterns], page 5) might also be useful in user defined patterns. These functions are:

void PtgOutId (PTG_OUTPUT_FILE fs, int c);
takes an index into the character storage module of Eli, see Section “Character
Storage Module” in Library Reference Manual. It outputs the string stored
there.

void CPtglOutstr (PTG_OUTPUT_FILE fs, char *s);
takes a string argument and outputs the same string quoted according to the
rules of the C language.

void CPtgOutchar (PTG_OUTPUT_FILE fs, int c);
takes an integer character code and outputs the character.

Chapter 2: Commonly used Output patterns for PTG 7

void PPtgOutstr (PTG_OUTPUT_FILE fs, int c);
takes a string argument and outputs the same string quoted according to the
rules of the Pascal language.

Examples

The first example will use a PTG pattern that prints an identifier or a floating point number.
This is done by defining the symbol role PtgLeaf that computes a ptg attribute. It generates
the source text of the identifier when processed through a ptg processing function. This
role can be inherited by a tree symbol that appears directly above a terminal, that was
processed through the mkidn gla processor.

CLASS SYMBOL PtgLeaf: ptg: PTGNode;

CLASS SYMBOL PtglLeaf COMPUTE
THIS.ptg = PTGIA(TERM);
END;

In this example, the class symbol Ptgleaf can be used later to denote all the different
grammar symbols that compute ptg leaf patterns. This is done for example in the second
example, that computes a PTG pattern that prints all occurrences of Ptgleaf in a comma
separated list.

CLASS SYMBOL LeafCommalist: ptg: PTGNode;
CLASS SYMBOL LeafCommaList COMPUTE
THIS.ptg =
CONSTITUENTS Ptgleaf.ptg
WITH (PTGNode, PTGCommaSeq, IDENTICAL, PTGNull);
END;

Please refer to Section “Symbol Specifications” in Lido Reference Manual, for an explana-
tion of symbol computations, see Section “CONSTITUENT(S)” in Lido Reference Manual,
for an explanation of the CONSTITUENT (S)-construct and read Section “Predefined Entities”
in Lido Reference Manual, for an explanation of the predefined IDENTICAL-function.

Special Situation when Using C String Literals

A special situation occurs, if C string literals are input tokens and are to be reproduced
identically. Two different token processors can be used to store the string: If the c_mkstr
processor is specified in a .gla file,

CStringlit: $\" (auxCString) [c_mkstr]

the string is interpreted and the result is stored. Such a string can be processed with
the pattern functions PTGCStringId() and PTGPStringId() to yield C or Pascal string
literals on output. However, as strings are null terminated in Eli, the first occurrence of an
embedded zero-character terminates the string, and the result is truncated. A solution for
this would be to not interpret the control sequences and to store the string verbatim as it
is provided on input. That is achieved by the token processor mkstr:

CStringLit: $\" (auxCString) [mkstr]

As control sequences are not interpreted by mkstr, PTGPString and PTGCString can not
be used to produce an identical output string. Instead, the pattern function PTGAsIs is
to be used. Since the latter token processor can handle embedded zero characters, it is

8 Tasks related to generating output

used in the canned description C_STRING_LIT for C string literals. See Section “Canned
Descriptions” in Lexical Analysis.

3 Indentation

The module Indent supplies a C module that implements some functions helpful for in-
denting text produced by PTG functions. The function names IndentIncr, IndentDecr,
IndentNewLine can be inserted into the user’s PTG specification, like

Block: "{" [IndentIncr] $ [IndentDecr] [IndentNewLine] "1}"

Stmt: [IndentNewLine] $ ";"
Those PTG specifications should not contain strings with the new line character, but should
have the [IndentNewLine] call instead.

Use the function IndentNewLine to put a linefeed into the output and indent the next
line. IndentIncr increments and IndentDecr decrements the indentation level. The width
of a single indentation step may be set to n spaces by the call IndentSetStep (n) executed
prior to initiating output (e.g. by PTGOut).

The module does not have generic parameters. It is used by writing

$/0utput/Indent.fw

in a .specs file.

11

4 Output String Conversion

This module provides a set of functions that transform character values and character string
values into C or Pascal literals.

The module does not have generic parameters. It is used by writing
$/0utput/OutStr.fw
in a .specs file.
The module exports the following functions:

void C_outstr (FILE *fs, char *s)
Translates s into a C string literal and outputs it on file fs.

void C_outchar (FILE *fs, char *s)
Translates s into a C character literal and outputs it on file fs.

void P_outstr(FILE *fs, char *s)
Translates s into a Pascal string literal and outputs it on file fs.

void outstr (FILE *fs, char *s)
Outputs s without translation on file fs.

13

5 Pretty Printing

The module ‘PrettyPrint’ supplies C functions that can be inserted in PTG patterns
to handle line breaks properly. The functions try to break the current line at the last
possible position that precedes the maximum line width. Furthermore, regions of text can
be indented.

Functions exist to mark line breaks and the begin and end of an indentation region.
These functions can be included into PTG pattern definitions.

PP_BreakLine
Specifies, that a line break can be inserted at this point. A line will only be
broken at these points.

PP_Indent

PP_Exdent
PP_Indent marks the beginning of an indented region. Line feeds following
this function call will not only begin a new line but also indent the next line by
an indentation step, the width of indentation can be adjusted with a function
discussed later. Indented regions can be nested and are terminated by a call to
the PP_Exdent-pattern function.

PP_Newline
Forces a line feed thereby inserting the newline sequence. The next line will be
indented properly. The newline character ‘"\n"’ in a PTG pattern is a shortcut
for a call to this output function.

Examples

The following PTG patterns can be used to yield different styles of indenting for blocks.
Here { and } are the symbols that denote the beginning and end of a block, $ is the
insertion point for the indented block. The first example sets those symbols in a new line
at the indentation level of the outer block:

Block: "\n{" [PP_Indent]
"\n" $ [PP_Exdent]
II\n}ll
Stmt: [PP_BreakLine] $

The next example also specifies an indented region. Here, the opening brace is set as
last token outside the block, separated with whitespace instead of a newline:

Block: " " [PP_BreakLine] "{" [PP_Indent]
"\n" $ [PP_Exdent]
Il\n}ll

The third example uses the indentation style commonly known as the GNU indentation
style. Here, the braces are set on a new line, indented two positions. The indented region
then follows indented four positions. To use this, set the indentation width to two by one
of the function calls discussed later. Then use the following pattern:

Block: [PP_Indent] "\n{" [PP_Indent]
"\n" $ [PP_Exdent]
"\n}" [PP_Exdent]

14 Tasks related to generating output

Additional functions

Additional functions exist to influence the behavior of the module.

PP_SetLineWidth(int width)
Sets the linewidth to the specified value. The default is 80.

PP_SetSoftBreakShortcut (char)
Assigns a character that should behave like a call to PP_LineBreak. A good
choice for this would be the tab character. The default is set to the null char-
acter what disables substitution.

PP_SetIndentationWidth(int width)
Sets the amount to indent in one indentation level. Indentation is normally
done by spaces. If a negative value is used, a tab character will be used for one
indentation step (counting as 8 character positions).

PP_SetEndline(char *endline)
Assigns the given string to be used as end-of-line sequence. Default for this is
‘““\n"’. Another good choice would be ‘"\r\n"’.

All these functions need to be called prior to the start of the output with one of the following
functions. They replace the PTG generated ones, if PrettyPrinting should be used.

PP_QutFPtr (FILE *f, PTGNode n)
Outputs the given ‘PTGNode’ to the given file that must have been opened for
output.

PP_OutFile(char *filename, PTGNode n)
Outputs the given ‘PTGNode’ to the named file.

PP_QOut (PTGNode n)
Outputs the given ‘PTGNode’ to the standard output.

Usage of Module

To use the pretty printing module, simply include it’s name in one of the .specs files:
$/0utput/PrettyPrint.fw

Restrictions

In two cases it is possible that an output line exceeds the given maximal length:

e A sequence of characters longer than the specified linewidth is output without inter-
mediate call to PP_LineBreak.

e A PTG Pattern contains tab characters that will be counted to have a width of 1 which
of course is not always true.
Additional information about this module and it’s implementation can be obtained by
the derivation

$elipkg/Output/PrettyPrint.fw :fwTexinfo :display

15

6 Typesetting for Block Structured Output

The module ‘BlockPrint’ supplies C functions that can be inserted in PTG patterns for
block formatting. It is the aim of this module to print all the text between the block
marks into one line. If that does not succeed, all embedded line breaks of the block are
converted into newlines. Additionally, blocks can be nested and blocking can be combined
with indentation.

There are functions to mark line breaks and the beginning and end of a block. These
functions can be included into PTG Pattern definitions.

BP_BreakLine
Specifies, that a LineBreak can be inserted at this point. A line will only be
broken at these points.

BP_BeginBlock

BP_EndBlock
Marks the beginning and end of a Block. If the text until the call to BP_
BlockEnd has room in the current line, all line breaks will be discarded. FElse,
all embedded line breaks will be converted into newlines.

BP_BeginBlockI

BP_EndBlockI
Same as the above. The block created by this pair of functions will additionally
be indented by one indentation step.

BP_Newline
Forces a linefeed thereby inserting the newline sequence. Note that with the
presence of this pattern function, the enclosing block is automatically tagged
as 'too long’ and all the remaining Line breaks in the current block are also
converted to newlines. The next line will be indented properly. The newline
character ‘"\n"’ in a PTG pattern is a shortcut for a call to this output func-
tion.

Examples

The following PTG patterns can be used to print nested C scopes with intermediate function
calls. The statements in one block will be indented properly and always be separated by
newlines. The arguments of a function call will be set into one line, if there is enough room.
If not, newlines will be inserted between the arguments.

FCall: "\n" $ string "(" [BP_BeginBlockI] $ [BP_EndBlockI] ");"
Arg: $ { "," [BP_BreakLine] } $
Block: "\n{" [BP_BeginBlockI]
$ [BP_EndBlockI]
||\n}"

Additional functions

BP_SetLineWidth(int width)
Sets the linewidth to the specified value. The default is 80.

16 Tasks related to generating output

BP_SetSoftBreakShortcut (char)
Assings a character that should behave like a call to BP_LineBreak. A good
choice for this would be the tab character. The default is set to the null char-
acter what disables substitution.

BP_SetIndentationWidth(int width)
Sets the amount to indent in one indentation level. Indentation is normally
done by spaces. If a negative value is used, a tab character will be used for one
indentation step (counting as 8 character positions).

BP_SetEndline(char *endline)
Assigns the given string to be used as end-of-line sequence. Default for this is
"\n". Another good choice would be "\r\n".

All these functions need to be called prior to start output with one of the following functions.
They replace the PTG generated ones, if block printing is used.

BP_OutFPtr (FILE *f, PTGNode n)
Output the given ‘PTGNode’ to the given file that must have been opened for
output.

BP_OutFile(char *filename, PTGNode n)
Output the given PTGNode to the named file.

BP_Out (PTGNode n)
Output the given PTGNode to the standard output.

Usage of Module

To use the block printing module, simply include it’s name in one of the .specs files:
$/0utput/BlockPrint.fw

Restrictions

In two cases it is possible that an output line exceeds the given maximal length:

e A sequence of characters longer than the specified linewidth is output without inter-
mediate call to BP_BreakLine.

e A PTG Pattern contains tab characters that will be counted to have a width of 1 which
of course is not always true.
Additional information about this module and it’s implementation can be obtained by
the derivation

$elipkg/Output/BlockPrint.fw :fwTexinfo :display

17

7 Processing Ptg-Output into String Buffers

The module StringQOut provides a possibility of processing the output associated to a
PTG node structure recursively into a string buffer. The buffer is maintained by calls to
Obstack-module-functions. The module PtgOutput is used to coordinate overrides of the
PTG output functions.

This module supplies two C functions:

char *PTG_StringOut (PTGNode root) ;
Takes the root to a PTG node structure as argument. Invokes the PTG printing
functions and processes the output into an automatically allocated and growing
string buffer. Upon termination, a pointer to to the start of this buffer is
returned.

void FreeStringOut();
Invocations of the PTG_StringQOut () function can consume quite a lot of mem-
ory. It is possible, that at some time, the string buffers created by this functions
are no longer needed. The memory consumed by this buffers can be returned
to the system by an invocation of the FreeStringOut () function. Please note,
that this function frees the space used by all invocations of PTG_StringQOut ()
together.

Additional information about this module and it’s implementation can be obtained by
the derivation

$elipkg/Output/StringOut.fw :fwTexinfo :display
Usage of Module

To include this module into your specification, simply add the following line to one of your
.specs-files:

$/0Output/StringQOut.fw

Restrictions

This module can be included to a specification together with other applications of the
PtgOutput module functions, e.g. PrettyPrint and BlockPrint. By doing so, it is possible
to pretty print a PTG node structure into a file or to process it into a string buffer. A
combination, for example to pretty print a PTG node structure into character buffer, is not
possible.

19

8 Introducing Separators in PTG Output

The ‘Separator’ module supplies functions to insert separator characters into the generated
output in a context dependent fashion.

It provides the function Separator which is meant to be embedded in PTG patterns,
e.g.
loop: "while" [Separator] $1 [Separator] $2 [Separator]

The insertions of Separator mark the positions in the generated output texts, where
separator characters might be placed.

The decision whether a separator is needed must be made by the user-supplied function
Sep_Print:
Sep_Print (PtgFilePtr file, const char *last, const char *next)
/* On entry-
file points to the output file
* last points to the last string printed
* next points to the string about to be printed
* On exit-
* An appropriate separator has been added to the output file
*kk /

*

Based on the textual context Sep_Print should decide whether a separator character is
required and, if so, must insert an appropriate separator into the output stream. Note that
Sep_Print is not allowed to modify either the last string printed or the string about to be
printed.

The ‘Separator’ module provides the following output functions which must be used
instead of the corresponding PTG functions (see Section “Output Functions” in PTG:
Pattern-based Text Generator):

PTGNode Sep_Out(PTGNode root);
PTGNode Sep_OutFile(char *filename, PTGNode root);
PTGNode Sep_OutFPtr(FILE *fptr, PTGNode root);

The ‘Separator’ module is used in conjunction with the Unparser Generator ‘Idem’
(see Section “Abstract Syntax Tree Unparsing” in Abstract Syntax Tree Unparsing) to
simplify pretty-printing of the output. Idem inserts calls to Separator after every literal
and terminal symbol in the templates corresponding to the grammar rules.

Usage
To include this module into your specification simply add the following line to one of your
. specs-files:

$/0utput/Separator.fw

An example of a Sep_Print function that works well with a C-like language is provided
as ‘C_Separator.fw’: a newline is added after any of ; { }, no separator is added after any
of ([. ++ - no separator is added before any of [] , . ; ++ —— and a single space added
in all other cases.

‘C_Separator.fw’ can be included in your specifications by putting

$/0utput/C_Separator.fw

20 Tasks related to generating output

into a .specs-file.

‘C_Separator.fw’ is also useful as an example how to develop your own Sep_Print
functions if none of the available modules is satisfactory. The simplest approach is to modify
‘C_Separator.fw’. Here is a sequence of Eli requests that will extract ‘C_Separator.fw’
as file ‘My_Separator.fw’, make ‘My_Separator.fw’ writable, and initiate an editor session
on it:

-> $elipkg/Output/C_Separator.fw > My_Separator.fw
-> My_Separator.fw !chmod +w
-> My_Separator.fw <

In order to change the decision about what (if any) separator is to be inserted in a given
context, you need to change ‘Sep_Print’ function, as described above.

Restrictions
Since the ‘Separator’ module uses its own PTG output functions
Sep_QOut
Sep_OutFile
Sep_OutFPtr
as explained above, it cannot be combined with specifications that influence PTG output
by redefining the PTG output macros (see Section “Influencing PTG Output” in PTG:
Pattern-based Text Generation).
The memory for storing the last string printed for the ‘Sep_Print’ function is restricted
to 1024 characters. If the last string printed exceeds 1024 characters, only its last 1024
characters are stored and passed to ‘Sep_Print’.

Index

A

AsIs, Ptg-Pattern............................. 5
attribute Sym.......... ool 1
B

block-structureoiiiiniiiiiannn.. 14
BP_BeginBloCKcovviiiiiiiiiiiiin 15
BP_BeginBlockIco it 15
BP_BreakLine........coiiiiirininaananan, 15
BP_EndBloCK.....ootiiiiineiieeiie i 15
BP_EndBlockI....... ..ot 15
BP_Newline........oourinininiiiiinnan, 15
BP_Out (PTGNOAe D) .. ovvveeeeiieeeeanes 16
BP_OutFile(char *filename, PTGNode n) 16
BP_OutFPtr(FILE *f, PTGNoden) 16
BP_SetEndline(char *endline)................ 16
BP_SetIndentationWidth(int width).......... 16
BP_SetLineWidth(int width) 15
BP_SetSoftBreakShortcut(char) 16
C

C_STRING_LIT. ...ttt ittt ennenn 7
CChar, Ptg-Pattern...................oiinie 6
CommaSeq, Ptg-Pattern......................... 6
CPtglutchar............... ... i 6
CPtglutstr....................... ...l 6
CString, Ptg-Pattern.......................... 5
E

Eol, Ptg-Pattern. 6
F

function C_outchar........................... 11
function C_outstr.........coviiiiiii... 11
functionoutstr.......... ..ot 11
function P_outstrt 11
G

Generating OQutput 1
I

Id, PtgPattern..........cooviiiiiiiinnnnnnnnn. 5
indentation.......... ool 8, 14, 16

21

L

Library OQutput....................., 1
linewidth............ o il 14, 15
M

Module Indentooii.L. 8
Module LeafPtg........ooiviiiiiiiiiiin... 1
Module OQutStr..... ..ottt 9
Module PtgCommon............................... 3
N

Numb, Ptg-Pattern 5
O

output functions............l 14, 16
P

PP_BreakLine.......... ..o, 13
PP_Exdentcciiiiiiiiiiiiiiiiiiii 13
PP_Indentcoiiuiiiiiiiiiiiiiiiiin, 13
PP Newline......................ii.... 13
PP_Out(PTGNode n)c.covvviniininninnnn.. 14
PP_OutFile(char *filename, PTGNode n) 14
PP_OutFPtr(FILE *f, PTGNode n) 14
PP_SetEndline(char *endline)................ 14
PP_SetIndentationWidth(int width).......... 14
PP_SetLineWidth(int width) 14
PP_SetSoftBreakShortcut(char) 14
PPtgOutstr........... i 6
pretty printing..............o il 11
PString, Ptg-Pattern.......................... 5
PTG Output ... 16
Ptg-Pattern AsIs......................... 5
Ptg-Pattern CChar 6
Ptg-Pattern CommaSeq.......................... 6
Ptg-Pattern CString........................... 5
Ptg-PatternEol................................ 6
Ptg-Pattern Id........... ..o, 5
Ptg-Pattern Numb.............ooiin. 5
Ptg-Pattern PString.............., 5
Ptg-PatternSeq...................... ... 6
PTGASIS() ..ot 5
PTGCChar() ...vvte i e 6
PTGCSEring() ...oovninititii e 5
PTGCStringId............ 5
PTGIA() « ottt et 5
PTGNUmMb () .o vvet e 5
PEEOULTA ..ottt e e e 6

PTGPString()ouiuinieiiiiiia e 5

22

PTGPStringld

Tasks related to generating output

Sep_0ut ... 19
Separatorl 17
Seq, Ptg-Pattern................. 6
String Buffer.....................oll 16

String LiteralsS........oouviiiiiiiinennnnnn... 7

	1 PTG Output for Leaf Nodes
	2 Commonly used Output patterns for PTG
	3 Indentation
	4 Output String Conversion
	5 Pretty Printing
	6 Typesetting for Block Structured Output
	7 Processing Ptg-Output into String Buffers
	8 Introducing Separators in PTG Output
	Index

