New Features of Eli Version 4.4

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences
Macquarie University
Sydney, NSW 2109
Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425
USA

Table of Contents

1 Eli can now run under Windows 1
2 Producing portable document files............. 3
3 Including indexes in LaTeX documents........ 5
4 New functionality for unparser generation.... 7
5 Eli-generated code as a component 9
6 Name analysis for declarators asin C........ 11

7 Scope Properties without
Ordering Restrictions 13

8 Better error reporting for known operators.. 15

9 Additional property access function.......... 17
10 New error reporting for parser conflicts.... 19
10.1 Example 19
10.2 Help oo 21
10.3 Parsable ... o 21
11 Using anything to access information....... 23
12 Simplified arithmetic on strings 25

1 Eli can now run under Windows

Eli 4.4.0 now runs reliably in the Cygwin Unix environment under Windows NT, 2000, and
XP. Windows 3.1, 95, 98, and ME do not support pre-emption and true multi-threading.
Eli is a multi-threaded program and therefore randomly deadlocks under these systems.
Unfortunately, Eli is considerably slower under Cygwin than it is under Unix.

For full instructions on how to obtain Cygwin and implement Eli under it, see the file
README.Windows in the top-level directory of the Eli 4.4.0 distribution.

2 Producing portable document files

Eli now uses pdftex and pdflatex to produce PDF files. The original source for the text
may be TeX or LaTeX, FunnelWeb, or Texinfo.

A conversion from TeX, LaTeX, or Texinfo to PDF is obtained simply by requesting the
:pdf product:

foo.tex :pdf
bar.tnf :pdf

FunnelWeb formatting is complicated by the typesetter option (see Section “Typeset-
ting Documentation with Eli” in FunnelWeb). You must choose the correct weaver for the
option and include it in the request. For example, suppose that your FunnelWeb file did
not use the typesetter option. In that case, fwTex is the correct weaver:

MySpec.fw :fwTex :pdf

You will not be able to produce PDF files from FunnelWeb files that specify ‘@p
typesetter = html’.

It is also possible to use a type-specs file to specify a collection of type-tnf files, all of
which are to be formatted. Suppose that the collection is defined by Doc.specs, that ps
is the directory into which PostScript files are to be placed, and that pdf is the directory
into which PDF files are to be placed. Here is a request that yields one PostScript file in
directory ps for each type-tnf file whose name appears in Doc.specs. That PostScript file
is formatted for two-sided printing, with each chapter starting on an odd-numbered page:

Doc.specs :ps >ps
Here is a request yielding one PDF file in directory pdf for each type-tnf file whose
name appears in Doc.specs. The ‘+single’ parameter means that the PDF file will be
formatted for single-sided printing — chapters are not forced to begin on odd pages:
Doc.specs +single :pdf >pdf
Unfortunately, the names of the files in the ps directory will have the suffix . tnf . tnfps’

and the files in the ‘pdf’ directory will have names ending in ‘.tnf.tnfpdf’. These names
can be changed by a simple Bourne shell script with commands like the following:

for £ in ‘1ls *.tnfpdf°
do mv $f ‘basename $f .tnf.tnfpdf‘.pdf
done

3 Including indexes in LaTeX documents

The Odin tex package has been updated to support automatic index generation. You can
now process LaTeX documents that contain \index commands, as described in Section 4.5
of the LaTeX User’s Guide & Reference Manual. The index generated from these commands
is printed by a \printindex command appearing in the LaTeX document. No additional
commands or derivations are involved.

Indexes are processed by makeindex, which is invoked automatically during a derivation
to PostScript or PDF. The Odin +index_flags parameter can be used to provide command-
line options to makeindex if desired. For example, the following derivation would supply
the index style file MyStyle.ist to makeindex during the consgtruction of a PDF file from
Doc.tex:

Doc.tex +index_flags=’-s’ (MyStyle.ist) :pdf

See makeindex for a complete description of the available options. Note that in general
the option list will contain both literal flags and file names. Any file names that do not
specify a full path should be parenthesized.

4 New functionality for unparser generation

Textual representations of tree-structured data objects can now be produced in five standard
forms: a generic functional notation (as with Eli 4.3.x), an XML description of the data
object, C++ code that will re-build the data object, Java code that will re-build the data
object, and code describing the graph to the daVinci graph visualization tool (assumes
daVinci 2.1, found at http://www.informatik.uni-bremen.de/daVinci/). It is also possible
for the user to specify their own notation for describing tree-structured data objects (see
Section “Languages describing tree structure” in Abstract Syntax Tree Unparsing).

Default output for terminal symbols has now been provided. The default assumes that
the internal representation for the terminal symbol is a string table index. Token processors
establish the internal representations for terminal symbols; mkidn and mkstr result in string
table indices, whereas mkint does not. If you want to unparse a tree whose terminal symbols
are not represented by string table indices, you need to override the default output (see
Section “Overriding PTG patterns” in Abstract Syntax Tree Unparsing).

5 Eli-generated code as a component

When you request an executable program from Eli, it is normally supplied with a main
program. If you want to use the generated code as a part of a larger system, then the
main program should not be supplied. Generation of the main program is controlled by
the +nomain parameter. This parameter is not new in Eli 4.4.0, but its documentation
has been improved (see Section “nomain — Omitting the main program” in Products and
Parameters Reference).

In some cases, the larger system containing the Eli-generated component has facilities
for analyzing input, and the tree described by the LIDO specification is built directly by
invoking Mk functions (see Section “Computed Subtrees” in LIDO - Reference Manual).
That means it is necessary to specify that Eli should generate no parser by giving the
parameter +parser=none (see Section “parser — Choose the parser generator” in Products
and Parameters Reference).

11

6 Name analysis for declarators as in C

A defining occurrence of an identifer may be part of Declarator, that is a larger construct
which determines the type of the defined identifer, for example the definition of the array
a in

int ala+1];
Here a[a+1] is the Declarator and the first a is its defining occurrence. A pair of roles
NAMEDeclaratorWithId and NAMEIdInDeclarator has been added to the module CScope
to solve name analysis for such cases.

13

7 Scope Properties without Ordering Restrictions

The name analysis modules which support scopes being properties of program entities
have been reconsidered. (They are used for example to bind identifier occurrences in
qualified names.) A new module ScopeProp has been added to the three existing ones
(AlgScopeProp, CScopeProp, BuScopeProp). ScopeProp fits to any of the basic scope rule
modules, Alg-like, C-like, or bottom-up. It does mot impose any ordering restriction that
would require the definition of a member to occur before its qualified use. It is recom-
mended to use this module instead of any of the other three. Even in case that such a
restriction is intended, one can use this module and enforce that restriction by a check of
the related positions. The three specific modules are kept in order not to invalidate existing
specifications.

15

8 Better error reporting for known operators

The Oil operator identification functions return an invalid operator if the specified operator
indication is not associated with an operator matching the context specified. This results
in a possibly misleading error report, effectively stating that there is no such operator.

When an operator indication is associated with exactly one operator, it may be preferable
to indicate specific mismatches between the requirements of the operator and the types
produced by the context. This can be done by returning the only possible operator, which
places appropriate constraints on the types of the operands and delivers a specific result
type.

0ilNoOverload takes two arguments. The first is the operator indication being identified
and the second is the result of a normal Oil operator identification function. The value of the
second argument is returned if it is valid. If the second argument is invalid, 0i1NoOverload
checks whether the first argument is associated with exactly one operator. If so, then
0ilNoOverload returns that operator; otherwise it returns the invalid operator yielded by
the second argument.

0ilNoOverload(‘oi’, 0ilId0pTS2(‘rt’, ‘oi’, ‘atsl’, ‘ats2’));

The arguments are:

‘oi’ The operator indication being identified.
‘rt’ The required result type.
‘ats1’ The set of possible first operand types.

‘ats2’ The set of possible second operand types.

17

9 Additional property access function

The access function Has has been added to the PDL library (see Section “Predefined query
and update operations” in Definition Table). Here is the signature:
int HasName(DefTableKey key)

If Has is applied to a definition table key that has an associated Name property, then it
yields 1; otherwise it yields 0.

Since NoKey represents an invalid entity that has no properties, applying Has to NoKey
yields 0.

If a property is to be queried by Has, then Has must be added to that property’s operation
list. For example, suppose that we wantto be able to ask whether a definition table key has
the DefTableKey-valued property Proc. Here is a declaration of the property:

Proc: DefTableKey [Has];
Given that declaration, the following query could be made in LIDO:
RULE: Expr ::= AppliedOccurrence ’(’ ArgList ’)’
COMPUTE
IF(NOT (HasProc (AppliedQOccurrence.Key)),
message (ERROR, "Not a procedure identifier",0,COORDREF));
END;

19

10 New error reporting for parser conflicts

We have a new default format for reporting parser conflicts: For each conflict, it provides
an example of a derivation leading to each of the conflicting situations. Our hope is that
it will be easier to determine the cause of the conflict with this information than with the
simple printout of the state that was given previously.

10.1 Example

Here is a simple example (see Section “Explanation of the grammar for word classification”
in Guide for New Eli Users):

text: set_defs

set_defs: set_def / set_defs set_def
set_def: set_name ’{’ set_body ’}’

set_name: word .

set_body: elements / .

elements: set_element / elements set_element
set_element: word .

Suppose that we make the grammar non-LALR by removing the brackets around
set_body. Here is the result of applying the default :parsable:

Conflicting Derivations

3k 3k 3k 3k 5k 3k 3k 3k 5k 5k >k >k 5k 5k 3k 3k 3k 5k 3k 3k 3k 5k 5k >k >k 5k 5k 3k 3k 3k 5k >k >k 3k 5k 3k 3k 3k 5k 5k 3k 3k 5k 5k 3k 3k 5k 5k 3k >k 3k 5k 5k 3k >k 5k 5k 3k 3k 5k 5k >k >k >k ok >k >k sk ok k %k k
***x gshift-reduce conflict on: word

text EOF
set_defs
set_defs set_def
| set_name set_body
| word
I
set_def
set_name set_body
[REDUCE] set_body -> {word} ?

text EOF
set_defs
set_def
set_name set_body
elements
set_element
. word [SHIFT] set_element -> word . 7

sk sk ok ok sk ok ok ok ok sk ok sk sk ok sk ok ok sk ok s ok ok s ok ok ok ok s ok ok s ok ok sk ok ok sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok ok
**% shift-reduce conflict on: word

20 New Features of Eli Version 4.4

text EOF
set_defs
set_defs set_def
| set_name set_body
| word
|
set_def
set_name set_body
elements . [REDUCE] set_body -> elements {word} 7

text EOF
set_defs
set_def
set_name set_body
elements
set_element
. word [SHIFT] set_element -> word . 7

3k 3k >k 5k >k 3k 3k 3k 5k %k 3k >k 3k 3k 5k 5k >k 3k 3k 5k 3k 5k 5k >k 3k 3k 5k 5k >k 3k >k 3k 5k >k 5k >k 3k >k 5k 5k >k 5k >k 3k 3k 3k 5k >k 5k >k 3k 3k %k 5k %k 5k >k %k 5k %k 5k >k 5k >k %k 5k %k 5k %k %k k k

This output gives two examples in which the parser will be unable to decide what to do
when it sees a word. Each example shows two conflicting derivations (a derivation is the
reverse of the parser’s reduction process, see Section “How the generated parser determines
phrase structure” in Syntactic Analysis Manual).

Each derivation begins with text EOF. Succeeding lines are the result of rewriting a
single nonterminal symbol by applying some production of the grammar. The result of a
rewriting step is aligned with the symbol being rewritten. Thus we can rewrite text to
set_defs, and then rewrite set_defs to set_defs set_def.

The lines adjacent to the vertical bar show how the lookahead symbol can be derived:
set_def is rewritten to set_name set_body, and then set_name is rewritten to word.

Below the vertical bar, the main derivation continues by rewriting the symbol at the top
of the bar. In this case, set_defs is rewritten as set_def, which is rewritten as set_name
set_body in turn. The final line of the first derivation shows the action that the parser
would take at that point: reducing an empty string to a set_body in the presence of the
lookahead symbol word.

This first derivation of the first example shows that the parser could recognize an empty
set body and consider that the lookahead symbol word is the name of the next set. You
should convince yourself that the second derivation of the first example shows how the
parser could consider the lookahead symbol word in this context to be the first element of
the first set. This ambiguity is clearly the result of omitting the opening brace. Without
that delimiter, there is no way to make the decision.

The second example also involves a word symbol. Here the question is whether the word
is the name of the next set or whether it is the next element of the current set. This error
is the result of omitting the closing brace. Again, without that delimiter, there is no way
to make the decision.

Chapter 10: New error reporting for parser conflicts 21

10.2 Help

If you have conflicts in your grammar, the :help derivation will show you messages for a
type-pgsconflict file. Each message specifies the type of conflict and the set of terminals
causing the conflict. Clicking the help browser’s Edit button while you are looking at
the message screen will bring up your editor on the type-pgsconflict file, which contains
the sample derivations that illustrate how the conflicts arise (see Section 10.1 [Example],
page 19).

10.3 Parsable
The :parsable derivation will give you the new diagnostics by default. You can still obtain
the state printout by supplying a +pgsOpt parameter to the derivation:

-> sets.specs +pgsOpt=’S’ :parsable <

Here the string S’ requests “standard” processing.

23

11 Using anything to access information

A Table is a sparse memory with a 32-bit address space (see Section “Mapping Arbitrary
Values To Definition Table Keys” in Abstract data types to be used in specifications). Each
element of the memory contains a DefTableKey value. This memory is used to implement
a mapping from values of some arbitrary type to definition table keys, allowing an arbitrary
set of properties to be associated with each value.

Any number of named tables can be instantiated, each with a specific type of value
to be mapped. More than one table can map any given type of value. When a table is
initialized, the user must provide two functions. One computes a 32-bit address from the
value to be mapped, the other determines whether two values of the type to be mapped
are identical. The first of these two functions often uses a general hashing operation (see
Section “Computing a Hash Value” in Solutions of Common Problems).

25

12 Simplified arithmetic on strings

The Eli library contains a general package called strmath for carrying out computations on
numeric values represented by strings (see Section “Character String Arithmetic” in The
Eli Library). This package is difficult to use in the context of LIDO, partially because each
computation overwrites the results of the previous computation. StrArith is a wrapper
for strmath that stores all results uniquely in the string table and associates error reports
with the node in which they occur (see Section “Character String Arithmetic” in Solutions
of Common Problems).

Index

_F

+nomain ... 9
FPATSEY .o 9
AlgScopeProp. ... 13
BuScopeProp........... ...l 13
C o 11
Cdeclarator............oooiiiiiiiniiinn... 11
Gt 7
computed subtreesl 9
CSCOpeProp.......ooviiiii 13
Cygwin............ ...l 1
daVincioo oo 7
FunnelWeb 3
Has ... 17

27

JaAVa . e 7
At e 3
Mk functionscoviiiiiiiiiniiinn. 9
OilNoOverloadc.vviiiiiieiienennnnn 15
PDF files... ..o e 3
SCOPEPTOD ..o 13
StrArith 25
Table . oot e 23
=5 3
texinfo 3
WindoWs . .viiit e e e 1
AL e 7

	1 Eli can now run under Windows
	2 Producing portable document files
	3 Including indexes in LaTeX documents
	4 New functionality for unparser generation
	5 Eli-generated code as a component
	6 Name analysis for declarators as in C
	7 Scope Properties without Ordering Restrictions
	8 Better error reporting for known operators
	9 Additional property access function
	10 New error reporting for parser conflicts
	Example
	Help
	Parsable

	11 Using anything to access information
	12 Simplified arithmetic on strings
	Index

