New Features of Eli Version 4.1

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

A. M. Sloane

Department of Computing
School of Mathematics, Physics, Computing and Electronics
Macquarie University
Sydney, NSW 2109
Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425
USA

Table of Contents

1 LIDO Language and Liga System.............. 3
1.1 CONSTITUENTS Restrictions Removed........................ 3
1.2 CHAIN in Empty Ruleso i 3
1.3 Grammar Root Symbol........ 3
1.4 Right-Hand Side Access ..ot 4
1.5 Bottom-up Evaluation........... 4

2 Specification Module Library................... 7
2.1 Environment Module Enhancements 7
2.2 Module for Testing Name Analysis................ooiiiiiiii... 7
2.3 Module ChainPtg obsolete........... ... i 7
2.4 Module Sort added. ...t 8
2.5 Module Separator added........... ... 8
2.6 Instanciation of Modules with Filenames........................ 8

3 Command-line processing....................... 9

4 Monitoring........... ... 11

5 Abstract Syntax Tree Unparsing.............. 13

6 FunnelWeb Output Specification 15

7 Miscellaneous......................... 17
7.1 Profile Support dropped 17
7.2 New Specification file-type eta......... oL 17

This document gives information about new facilities available in Eli version 4.1 and
those modifications made since the previous distributed Eli version 4.0 that might be of
general interest. Numerous corrections, improvements, and additions have been made with-
out being described here. They shall just help users to solve their problem without taking
notice of Eli’s mechanism.

1 LIDO Language and Liga System

The modifications of the Lido language and the Liga system refer to the following topics:
The use of symbol computations is further simplified by removal of certain restrictions, and
by introduction of some new constructs. Some restrictions on bottom-up evaluation are
removed. A mechanism has been installed such that messages given by the C compiler on
the generated evaluator are related back to the Lido text.

None of the modifications invalidates existing Lido specifications.
For complete descriptions of the modified constructs see the Liga documentation: See

Section “top” in LIDO — Reference Manual. See Section “top” in LIDO - Computation in
Trees.

1.1 CONSTITUENTS Restrictions Removed

If a symbol computation contains a CONSTITUENTS construct, like

CLASS SYMBOL CS COMPUTE
SYNT.c = f (CONSTITUENTS X.a WITH (t, f2, f1, £0));
END;
it was not allowed to inherit CS to a symbol that has a production with an empty right-
hand side. It was also a violation if X were a CLASS symbol that is not inherited to any
symbol. This was sometimes annoying, especially when using library modules.
Both restrictions have been removed. The result of the CONSTITUENTS is in such
cases the result of the £f0-function. A VOID CONSTITUENTS is replaced by nothing in
such cases.

See Section “CONSTITUENT(S)” in LIDO — Reference Manual.

1.2 CHAIN in Empty Rules

It was a violation if a computation containing a TAIL chain access is inherited to a symbol
that has a production with an empty right-hand side. A HEAD computation was dropped
in such cases. This was sometimes annoying, especially when using library modules. This
restriction has been removed.

Now, if a computation that contains a CHAINSTART, HEAD, or TAIL is inherited to a
rule with an empty right-hand side, its effect is as if there was a symbol on the right-hand
side that passes the chain unchanged.

See Section “CHAIN” in LIDO — Reference Manual.

1.3 Grammar Root Symbol

The
CLASS SYMBOL ROOTCLASS END;

is predefined without any computation. It is inherited to the particular root symbol of
the tree grammar.

This facility is especially useful for writing grammar independent modules which need to
associate computations to the grammar root. Module users then do not need to explicitly
inherit a root role.

4 New Features of Eli Version 4.1

See Section “Predefined Entities” in LIDO — Reference Manual.

1.4 Right-Hand Side Access

The entities TermFct, RhsFct, and RULENAME are predefined to simplify symbol computa-
tions that access the right-hand side of rules they are inherited to.

See Section “Predefined Entities” in LIDO — Reference Manual.

A function TermFct is predefined to be used for systematic access of terminal values in
computations. It is intended to be used in computations of CLASS SYMBOLs:

CLASS SYMBOL LeafNode COMPUTE

SYNT.Ptg = TermFct ("ToPtg", TERM);
END;
SYMBOL LiteralExpr INHERITS LeafNode END;

If there were the following two rules for LiteralExpr that derive to different terminals,
then the above computation is expanded as shown below:

RULE: LiteralExpr ::= IntNumber COMPUTE
LiteralExpr.Ptg = ToPtgIntNumber (IntNumber);

END;

RULE: LiteralExpr ::= FloatNumber COMPUTE
LiteralExpr.Ptg = ToPtgFloatNumber (FloatNumber) ;

END;

Suitable functions have to be defined for the calls constructed by prefixing the terminal
name with the string given in the TermFct call.

A call of the predefined function RhsFct (C_String, arguments ...) is substituted by
a call of a function whose name is composed of the C_String and and two numbers that
indicate how many nonterminals and terminals are on the right-hand side of the rule that has
(or inherits) this call. The remaining arguments are taken as arguments of the substituted
call. E.g. in a rule RULE: X ::=Id Y Id Z Id END;, where Y, Z are nonterminals, and Id is
a terminal, a call RhsFct ("PTGChoice", a, b) is substituted by PTGChoice_2_3 (a, b).
Usually, RhsFct will be used in symbol computations, having arguments that are obtained
by the RHS construct and by a TermFct call.

RULENAME can be used in computations. It is replaced by the rule name as a string literal.

1.5 Bottom-up Evaluation

Liga’s strategy for scheduling BOTTOMUP computations has been changed: The generated
evaluator performs computations during the tree construction phase if and only if there are
some computations marked BOTTOMUP.

See Section “Computations” in LIDO — Reference Manual.

Requesting BOTTOM_UP or TREE_COMPLETE in a .ctl file is now unnecessary and mean-
ingless.

See Section “Order Options” in LIGA - Control Language.

Attributes are computed during the tree construction phase only if they are needed for
BOTTOMUP computations. That strategy reduces the size of the tree in general.

Chapter 1: LIDO Language and Liga System 5

Information about the results of Liga’s analysis for BOTTOMUP can be obtained by deriving
OrdInfo.

The restrictions on BOTTOMUP computations have been relaxed: The facility of subtrees
being built by computations may be used together with some other computations being
marked BOTTOMUP, unless computations in such generated subtrees are preconditions for
BOTTOMUP computations.

Furthermore, chain productions may be introduced into the tree grammar, if necessary,
without having corresponding chain productions in the concrete grammar, as long as they
are not involved in BOTTOMUP computations. This situation is automatically checked in
cooperation between Liga and the Maptool.

2 Specification Module Library

Many library modules provide some symbol role, e.g. RootScope, that has to be inherited
to a tree grammar symbol which is usually the root of the tree grammar. These moduls
are modified such that those root roles are automatically associated to ROOTCLASS, which
stands for the tree grammar root. See Section 1.3 [Grammar Root Symbol], page 3.

All name analysis modules have been adapted to the modifications of the environment
module. These changes should not invalidate existing uses of the modules.

See Section “Name Analysis Library” in Specification Module Library: Name Analysis.

2.1 Environment Module Enhancements

The environment module envmod. [ch] has been augmented by functions and macros that
further support name analysis for object-oriented languages, i.e. name analysis with scopes
that inherit from other scopes.

The module was also augmented by functions that return a binding instead of a definition
table key. A binding is a triple (int idn, Environment sc, DefTableKey key), for an
identifier idn that is bound to key in the scope sc.

A full description of the interface of the module is given in the name analysis part of
the module library documentation. (It has been moved there from its previous place in the
documentation of Eli library routines.).

See Section “Environment Module” in Specification Module Library: Name Analysis.

Existing uses of the module should not be invalidated by these changes.

2.2 Module for Testing Name Analysis

A module is provided which augments the specified processor such that it produces output
that makes the results of name analysis visible. For each identifier occurrence that has one
of the identifier roles of the name analysis modules a line of the form

m in line 23 bound in line 4 of scope in line 3

is written to the standard output file. In general it is sufficient just to instantiate the
module ShowBinding with the same instance parameter as used for the basic name analysis
module.

See Section “Name Analysis Test” in Specification Module Library: Name Analysis.

2.3 Module ChainPtg obsolete

Module ChainPtg was obsolete with Version 3.6 of the Eli-System. This module has now
been removed without replacement.

To collect PTG-Nodes for output, use CONSTITUENTS-Construct in Combination with
the Pattern Seq of the new Module PtgCommon.

See Section “Using LIDO CONSTITUENTS” in Pattern-Based Text Generator, for
details.

8 New Features of Eli Version 4.1

2.4 Module Sort added

A generic sorting module has been added to the library. This module can be instantiated
for any data type, and sorts an array whose elements are of that data type. A user-supplied
function defines the collating sequence, so that any arbitrary ordering is possible. The sort
is done in place, so that the array after the sort is a permutation of the array before the
sort.

See Section “Sorting Elements of an Array” in Specification Module Library: Common
Problems, for details.

2.5 Module Separator added

This is a new PTG output module that allows separators to be inserted into the output
stream depending on the last string printed and the next string to be printed.

See Section “Introduce Separators in PTG Output” in Specification Module Library:
Generating Output, for details.

2.6 Instanciation of Modules with Filenames

To instanciate modules, that require filenames as their arguments from within a .fw-files
previously required specification of the . fw-file generating it. This is now no longer required.

For example, to instanciate the PreDefId-Module with a filename predef .d, the follow-
ing example now works within and outside from a .fw specification:

$/Name/PreDefld.gnrc +referto=(Predef.d) :inst

See Section “Predefined Identifiers” in Name analysis according to scope rules, and
Section “Language-defined operators” in Type Analysis Reference Manual, for more infor-
mation.

3 Command-line processing

The command-line processing tool has been rewritten to use a more flexible implementation
technique. In the process some erroneous situations that weren’t detected before are now
detected.

Most notably, in previous versions when a positional parameter was specified no usage
message was printed if the user did not provide a value for the parameter. This has been
fixed.

Repeated boolean options are now a count of the number of times the option appears
rather than a list of keys each of which have the value 1. This is a potential source of
incompatibility with previous versions.

The new version also provides some new features, described in the following paragraphs.

Previously it was possible to have an integer or string value that was either the next
argument or was joined to the option string. I.e., the following were possible
-#23
-m foo
It is now possible to have an option where the value can be either the next argument or
can be joined to the option string. This is indicated by the keyword "with".
MacroPackage "-m" with strings "Load this macro package";
NumCols "-C" with int "Use this many colours";
NumZaps "-z" with ints "Zap this many times";
It is now possible to have more than one option string that invokes a particular option.
Just list more than one string.
MacroPackage "-m" "mac" with strings "Load this macro package";
NumZaps "-z" "-Zap" "whammo" ints "Zap this many times";
Empty .clp files are now acceptable. The resulting processor will accept standard input,
but nothing on the command line.

11

4 Monitoring

The Noosa system (invoked using the :mon product has undergone some major changes
since the last release of Eli. Numerous small changes have been made to the user interface
but the general appearance is the same.

The default font is not specified by Noosa any more. You now get whatever your Tk
setup gives you by default, but you can set it yourself using the Noosa*Font resource in
your .Xdefaults. More support for resources will be provided in future releases.

The previous version displayed the complete abstract syntax tree drawn in a conventional
fashion. The new version also includes a tree display that allows a partial view of the tree
and takes up much less space. It is designed for browsing of the tree and nodes can be
selectively opened and closed. You can select which of the kinds of tree display you want
using the Abstract Tree item in the Windows menu.

Eli and Noosa now have support for attribution monitoring so the nodes in the tree
displays provide access to the node attributes. You can elect to see the values of attributes;
they are displayed in the transcript window when next computed. Optionally you can also
make the program stop when the value of an attribute is computed (a form of breakpoint).

The Windows menu has a new entry called Files. This brings up a window from which
it is possible to display and edit files while you are monitoring (e.g., to fix bugs in your
specs or to alter the process input). The Open menu item in the Noosa menu is no longer
provided since its functionality is subsumed by the new window type. You can have as many
file windows as you like. They support emacs-style key bindings and support searching.

Sensitive areas in the transcript are now always underlined and you just have to click
on them with Bl (a’la netscape) to "open" them. What "opening" means depends on
the kind of value. In the current version the sensitive areas are coordinates (or coordinate
ranges), abstract tree nodes (Nodes), and pattern-based text generator nodes (PTGNodes).
Opening a coordinate (or range) highlights that coordinate (or range) in the input window.
Opening an abstract tree node highlights the node in an abstract tree window (if there are
any). Opening a PTGNode causes the text expansion of that node to be printed at the
bottom of the transcript window. Future versions of Noosa will support opening other types
of values such as environments and definition table keys.

In this version of Eli the :mondbx and :mongdb products are not operational due to the
new Noosa implementation. This situation will be remedied as soon as possible with the
fixes being made available via an Eli patch.

13

5 Abstract Syntax Tree Unparsing

Parsing is the process of constructing a tree from a string of characters; unparsing is the
reverse: constructing a string of characters from a tree. An Eli user can specify an arbitrary
unparser by means of a combination of attribute computations and PTG (see PTG: Pattern-
Based Text Generator) templates. For a large tree, this can be a tedious process.

Given a specification of the set of rules defining the tree, Eli can now generate the com-
binations of attribute computations and PTG templates needed to produce certain common
unparsings. This information can be extracted and modified, or it can be automatically
merged with the remainder of the specification to produce the output routines for the gen-
erated processor.

See Abstract Syntax Tree Unparsing, for details.

15

6 FunnelWeb Output Specification

A non-product output file, named by @N, is now available. A non-product output file is
identical to a normal output file except that it is not included in the set of files making up
the final product specification.

Non-product files are files that are used in the derivation of product components, but are
not themselves components of the product. For example, consider the problem of making
keywords case-insensitive but retaining case sensitivity in identifiers (see Section “Making
Literal Symbols Case Insensitive” in Lexical Analysis). Here is a portion of a FunnelWeb
file implementing such a processor:

@0@<nolit.gla@>==0{
identifier: C_IDENTIFIER
@}

ON@<keyword.gla@>==0{
$la-z]+
@}

@0@<keyword.specs@>==0{
keyword.gla :kwd
e}

Note that the file keyword.gla can not form part of the final product specification. If
it did, the specified processor would treat all completely lower case identifiers as comments!
Nevertheless, file keyword.gla is necessary to specify the representation of the keywords in
the grammar so that they can be extracted and processed separately (see Section “Making
Literal Symbols Case Insensitive” in Lexical Analysis). Thus file keyword.gla is defined
as a non-product file by using @N instead of @0 when specifying its name and content.

17

7 Miscellaneous

7.1 Profile Support dropped

Support of Profiling in Eli had included only the definition of the commandline-switch when
calling the C-Compiler. The documentation on profiling-Support in Eli was incomplete in
large parts.

Since it is not possible, to automatically determine the correct commandline-switches for
support of profiling in the C-Compiler, the support of profiling was dropped int the current
version of Eli. If you need to use profiling, substitute the +prof-derivation option with
+define=’-pg’. For further information on the profiling-support that is built into Odin,
refer to the odin reference manual available from ftp://ftp.cs.colorado.edu/pub/odin.

7.2 New Specification file-type eta

The type-.eta-files serve to assemble include-files just as the .phi-files. While the .phi-
files can be used only, to introduce code into a .c or .h-file, the .eta-files assemble an
include-file that can be used throughout the whole specification.

For a description of this file-type, see Section “Descriptive Mechanisms Known to Eli”
in Guide for New Eli Users.

Index

A

abstract syntax tree display................ 11
attribute value display...................... 11

B

binding 7
bottom-up............. il 4
BOTTOM_UP ...t 4
BOTTOMUP . ..ot 4
browsing attribute values 11

C

chain production.............l 5
ChainPtg ..ottt 7
CHAINSTARTo 3
command-line processing 9
computed treesiiiiiiiiiiiiiiia. 4
CONSTITUENTSoiitttit i 3

E

editing files while monitoring.............. 11
empty .clp files............ oL 9
emptyrulesl 3
Environment Module 7
ENVIOA. .ottt 7

F

files, non-product 15
fontsinNoosa...........iiiiiiiiiiin.. 11
FunnelWeb files............. ..., 15

G

generated trees......................a 5
grammar Yooto.iiiiiiiiiiii.. 3

Adem. ... 13
inst-derivation................ . o i 8
instanciating modules from .fw-files........ 8

19

M

Monitoring............cooiiiiiiiiiiiii 11
multiple option strings....................... 9

N

name analysis test.............. 7
non-product output files..................... 15
NOOSa. .\ttt 11

object-oriented 7
Operator-Moduleoooiiiiiiii., 8

P

positional parameters......................... 9
PreDefId-Modulec.coiiiiiiiinnnnnnnnnn. 8

R

repeated boolean options...................... 9
RhsFct... ..o 4
right-hand side................. 4
TOOt TOleS ... 7
ROOTCLASS ..t 3
ROOTCLASS ..o s 7
Tule Mame. ..ottt 4
RULENAME e 4
S

Separator ... 8
ShowBinding..............ooiiiiiiiiiiiiiii i 7
S T3 2 8

TAIL .. e 3
TermFCt ..ttt 4
terminal @CCeSS. ... uirie e iie e 4
3 =Y P 13
TREE_COMPLETE.o 4

U

unparser generation.......................... 13

v

value options with or without spacing........ 9

	1 LIDO Language and Liga System
	CONSTITUENTS Restrictions Removed
	CHAIN in Empty Rules
	Grammar Root Symbol
	Right-Hand Side Access
	Bottom-up Evaluation

	2 Specification Module Library
	Environment Module Enhancements
	Module for Testing Name Analysis
	Module ChainPtg obsolete
	Module Sort added
	Module Separator added
	Instanciation of Modules with Filenames

	3 Command-line processing
	4 Monitoring
	5 Abstract Syntax Tree Unparsing
	6 FunnelWeb Output Specification
	7 Miscellaneous
	Profile Support dropped
	New Specification file-type eta

	Index

