
Tutorial on Name Analysis

Compiler and Programming Language Group
University of Paderborn, FB 17

33098 Paderborn, FRG

Copyright, 1999 University of Paderborn

i

Table of Contents

1 Kernel Grammar . 1

2 Basic Scope Rules . 3

3 Produce Output of Identifier binding 5

4 Messages on Scope Rule Violations 7

5 Predefined Identifiers . 9

6 Joined Ranges . 11

7 A Second Name Space . 13

8 Scopes being Properties of Objects 15

9 Insertion of Scopes into the
Environment Hierarchy . 17

10 Classes with Multiple Inheritance 19

11 Objects Having a Scope Type 21

1

1 Kernel Grammar

The kernel grammar of the example language specifies the structure for Program, Block
consisting of Declarations and Statements, and trivial Expressions. Different forms
of Declarations, Statements, and Expressions are added to the grammar as the name
analysis task is further refined.

Core.con[1]==

Program: Source.

Source: Block.

Block: Compound.

Compound: ’begin’ Declaration* Statement* ’end’.

Statement: Expression ’;’.

Expression: Operand.

Operand: IntNumber.

This macro is attached to a product file.

Expressions and Operands are represented by Expression contexts in the tree grammar.

Core.sym[2]==

Expression ::= Operand.

This macro is attached to a product file.

The notation of identifiers and numbers is chosen as in Pascal.

Core.gla[3]==

Ident: PASCAL_IDENTIFIER

IntNumber: PASCAL_INTEGER

PASCAL_COMMENT

This macro is attached to a product file.

In the course of refining the name analysis task we will introduce several different contexts
for identifier occurrences. Each occurrence has to have the attribute Sym representing the
identifier encoding. Hence we specify a computational role IdentOcc that provides that
attribute, and will be inherited by any identifier occurrence.

Core.lido[4]==

TERM Ident: int;

ATTR Sym: int;

CLASS SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

This macro is attached to a product file.

3

2 Basic Scope Rules

In many cases of name analysis the language distinguishes between defining occurrences
of identifiers in declaration and applied occurrences in expressions (an example with only
one kind of identifier occurrence is shown below). Hence, we extend our kernel grammar
by DefIdent for defining occurrences of identifiers and UseIdent for applied occurrences,
and by Declarations that introduce names for values. An Expression can be an applied
identifier occurrence.

Furthermore we introduce nested Blocks by deriving them from Expressions, and hence
also from Statements.

CoreScope.con[5]==

Declaration: ’val’ ValDecls ’;’.

ValDecls: ValDecl // ’,’.

ValDecl: DefIdent ’=’ Expression.

Expression: Block.

Operand: UseIdent.

DefIdent: Ident.

UseIdent: Ident.

This macro is attached to a product file.

The basic task of name analysis is consistent renaming. For each identifier occurrence a Key
attribute is computed such that identifier occurrences that refer to the same object in the
program have the same Key attribute value. Hence Keys identify program objects uniquely.
Keys are used to associate properties with program objects and to retrieve those properties
in different contexts.

The scope rules of a language determine how identifier occurrences are bound to program
objects.

The basic Algol-like scope rule reads:

A definition of an identifier a is valid in the whole smallest range that encloses
that definition, except inner ranges that contain another definition of a.

Hence, a definition in an outer range is hidden by a definition of the same identifier in an
inner range for the whole inner range. Identifiers may be applied before they are defined.

We instantiate a library module that provides computations according to this scope rule:

CoreScope.specs[6]==

$/Name/AlgScope.gnrc:inst

This macro is attached to a product file.

The computational roles RangeScope, IdDefScope, and IdUseEnv are associated with the
corresponding symbols of our grammar.

CoreScope.lido[7]==

SYMBOL Block INHERITS RangeScope END;

SYMBOL DefIdent INHERITS IdDefScope, IdentOcc END;

SYMBOL UseIdent INHERITS IdUseEnv, IdentOcc END;

This macro is attached to a product file.

4 Tutorial on Name Analysis

As a result attributes DefIdent.Key and UseIdent.Key are computed according to the
scope rules.

5

3 Produce Output of Identifier binding

We want to test the name analysis of our compiler. For that purpose we instantiate a
library module that provides computations which report the results of name analysis. It is
instantiated in the same way as the basic name analysis module:

NameTest.specs[8]==

$/Name/ShowBinding.gnrc:inst

This macro is attached to a product file.

As a result the generated compiler will produce a line for every identifier occurrence like

m in line 23 bound in line 4 of scope in line 3

7

4 Messages on Scope Rule Violations

Erroneous programs may violate the scope rules in one of two cases:

• A particular applied identifier occurrence has no valid defining identifier occurrence.

• An identifier in a range may have more one defining occurrences.

Such situations shall be indicated by error messages. Furthermore, we want every defining
occurrence of a multiply defined identifier to be marked by a message.

For that purpose we use the following two library modules:

CoreChk.specs[9]==

$/Tech/Strings.specs

$/Prop/OccCnt.gnrc:inst

This macro is attached to a product file.

The Strings module provides a function that concatenates an error message string and
an identifier for error messages related to identifiers, see Section “String Concatenation” in
Specification Module Library: Common Problems.

The OccCnt module provides computations that count how often an object identified by
a Key attribute occurs in a certain context, in our case in a defining context. See Section
“Count Occurrences of Objects” in Specification Module Library: Properties of Definitions,
for more information.

The check for existence of a definition is directly obtained from the module role ChkIdUse.
For the second check we specify a computational role ChkUnique in order to reuse it for
several grammar symbols. If an object occurs more than once in the ChkUnique context it
is multiply defined.

CoreChk.lido[10]==

SYMBOL ChkUnique INHERITS Count, TotalCnt COMPUTE

IF (GT (THIS.TotalCnt, 1),

message (ERROR, CatStrInd ("identifier is multiply defined: ",

THIS.Sym),

0, COORDREF));

END;

SYMBOL UseIdent INHERITS ChkIdUse END;

SYMBOL DefIdent INHERITS ChkUnique END;

This macro is attached to a product file.

9

5 Predefined Identifiers

Allmost all languages have certain identifiers that are predefined for any program. This
facility is demonstrated by introducing typed variable declarations to our language:

Predef.con[11]==

Declaration: ’var’ VarDecls ’;’.

VarDecls: VarDecl // ’,’.

VarDecl: TypeUseIdent DefIdent.

TypeUseIdent: Ident.

This macro is attached to a product file.

The type of a declared variable is given by a TypeUseIdent. A TypeUseIdent has the same
computational roles which we associated with applied identifier occurrences, except that it
is not checked for being defined since we assume that only predefined type identifiers are
used:

Predef.lido[12]==

SYMBOL TypeUseIdent INHERITS IdUseEnv, IdentOcc END;

This macro is attached to a product file.

The technique for predefining identifiers is provided by the library modules PreDefine and
PreDefId, see See Section “Predefined Identifiers” in Specification Module Library: Name
Analysis. PreDefine is instantiated with the Ident symbol name as generic parameter.
PreDefId is instantiated with the file name Predef.d. That file contains a sequence of
macro calls, like PreDefKey ("int", intKey). Each introduces a string and the name of a
key. The identifier is then bound to that key in the outermost environment of each program.
Those Keys could be used in computations, e.g. for type checking (We do not make use of
this facility here.)

Predef.specs[13]==

$/Name/PreDefine.gnrc+referto=Ident:inst

$/Name/PreDefId.gnrc+referto=(Predef.d):inst

This macro is attached to a product file.

Predef.d[14]==

PreDefKey ("int", intKey)

PreDefKey ("real", realKey)

PreDefKey ("bool", boolKey)

PreDefKey ("true", trueKey)

PreDefKey ("false", falseKey)

This macro is attached to a product file.

11

6 Joined Ranges

In our language subtrees rooted by a Block symbol exactly cover a range of the program
in the sense of the scope rules. Hence, we could simply associate the role RangeScope with
Block above.

However, there are situations where a range in the sense of the scope rules extends over
several subtrees, but their common root can not be taken as the scope range. Such a
situation occurs for example in Pascal, where the formal parameter list of a procedure and
the procedure body form a single range.

The join statement below demonstrates such a situation. It consists of two blocks which
together shall form one range in the sense of the scope rules. I. e. any definition in each of
the blocks is valid in both of them. But the identifier after the join symbol is defined in
the enclosing range.

Join.con[15]==

Statement: Join.

Join: ’join’ DefIdent JoinedBlock JoinedBlock ’joined’ ’;’.

JoinedBlock: Compound.

This macro is attached to a product file.

We could modify the grammar in order to get a single symbol representing that range. But
that may not be desirable due to parsing reasons. The problem is solved by the following
technique:

A symbol, here Join, is identified such that it contains both ranges. It has the module role
RangeSequence, which does not constitute a range in the sense of scope rules. Hence the
DefIdent belongs to a range that encloses the statement.

The symbol JoinedBlock has the module role RangeElement. The two JoinedBlock below
the Join symbol then form a range in the sense of scope rules.

The roles RangeSequence and RangeElement are obtained from the library module
AlgRangeSeq, see See Section “Joined Ranges” in Specification Module Library: Name
Analysis.

Join.specs[16]==

$/Name/AlgRangeSeq.gnrc:inst

This macro is attached to a product file.

Join.lido[17]==

RULE: Join ::= ’join’ DefIdent JoinedBlock JoinedBlock

’joined’ ’;’

END;

SYMBOL Join INHERITS RangeSequence END;

SYMBOL JoinedBlock INHERITS RangeElement END;

This macro is attached to a product file.

13

7 A Second Name Space

The scope rules of some languages define several distinct name spaces, i.e. the identifier
occurrences in one name space do not affect bindings in another name space. In C, for
example, variable identifiers and label identifiers belong to different name spaces.

We demonstrate that aspect by introducing a special kind of variable to our language.
Such variables are set by a special statement, and accessed by special operands. Hence,
the identifier occurrences are syntactically distinguished from identifier occurrences of the
name space used so far.

Flat.con[18]==

Statement: ’set’ CtrlVarUse ’to’ Expression ’;’.

Operand: ’use’ CtrlVarUse.

CtrlVarUse: Ident.

This macro is attached to a product file.

We use another instantiation of the scope rule library module to specify the scope rules for
the second name space, and require test output for it:

Flat.specs[19]==

$/Name/AlgScope.gnrc+instance=CtrlVar:inst

$/Name/ShowBinding.gnrc+instance=CtrlVar:inst

This macro is attached to a product file.

The instance parameter is set to CtrlVar to distinguish the module instance from the one
for the first name space.

We demonstrate another variant of scope rules for our new CtrlVar name space: There is
no nesting of ranges, i.e. the Program is the only range of a flat name space. Furthermore,
identifiers are implicitly defined by using them. Hence, there is only one kind of identifier
occurrences. It has the role of a defining occurrence (CtrlVarIdDefScope), i.e. a new
object key is created, if the identifier is not yet bound.

Flat.lido[20]==

SYMBOL Source INHERITS CtrlVarRangeScope END;

SYMBOL CtrlVarUse INHERITS CtrlVarIdDefScope, IdentOcc END;

This macro is attached to a product file.

Since we allow the use of CtrlVar before it is set, these scope rules can not be violated.
Hence, we do not need any checks or messages.

15

8 Scopes being Properties of Objects

Certain language constructs require that a set of bindings, i.e. a scope is associated as a
property of an object. We demonstrate this facility by introducing modules to our language:

ScopeProp.con[21]==

Declaration: ’module’ DefIdent ModBlock ’;’.

ModBlock: Compound.

Operand: ModUseIdent ’::’ QualIdent.

ModUseIdent: Ident.

QualIdent: Ident.

This macro is attached to a product file.

Any object a declared in the ModBlock of a module m, but not in deeper nested Blocks, can
be accessed by m::a wherever m is bound to that module. We say the identifier occurrence
of a is qualified by m.

A library module (see Section “Scopes Being Properties of Objects” in Specification Module
Library: Name Analysis) provides computational roles for scopes being associated with
object keys:

ScopeProp.specs[22]==

$/Name/ScopeProp.gnrc:inst

This macro is attached to a product file.

The scope of the module body, with its local definitions, is associated as a property with
the key representing the module. The role ExportRange of the library module characterizes
such an association. ModBlock.ScopeKey is used to specify the key with which the scope
property is associated.

ScopePropDef.lido[23]==

SYMBOL ModBlock INHERITS ExportRange END;

RULE: Declaration ::= ’module’ DefIdent ModBlock ’;’ COMPUTE

ModBlock.ScopeKey = DefIdent.Key;

END;

This macro is attached to a product file.

In binding a qualified identifier occurrence, QualIdent, the role QualIdUse is used to access
the scope property associated with the ModUseIdent.Key and bind the identifier. The
module computation provides a specification of QualIdent.Scope.

We assume that ModUseIdent indeed has an associated scope . An error message is issued
if that assumption is violated, e.g. in the case of a variable identifier.

In addition, the roles used for applied identifier occurrences are associated.

ScopePropUse.lido[24]==

RULE: Expression ::= ModUseIdent ’::’ QualIdent COMPUTE

QualIdent.ScopeKey = ModUseIdent.Key;

IF (AND (NE (QualIdent.ScopeKey, NoKey),

EQ (QualIdent.Scope, NoEnv)),

message (FATAL, CatStrInd ("module or class identifier required: ",

16 Tutorial on Name Analysis

ModUseIdent.Sym), 0, COORDREF));

END;

SYMBOL ModUseIdent INHERITS IdUseEnv, ChkIdUse, IdentOcc END;

SYMBOL QualIdent INHERITS QualIdUse, ChkQualIdUse, IdentOcc END;

This macro is attached to a product file.

17

9 Insertion of Scopes into the Environment
Hierarchy

We now demonstrate how scopes obtained from object properties are inserted into the
environment hierarchy given by the syntactically nested ranges. For this purpose we extend
our module example.

We introduce a with statement that allows the components of a module to be used without
qualification in the WithBody. (This construct is similar to the with statement in Pascal,
where record variables are used instead of the module identifiers discussed here. It directly
corresponds to the use construct in Ada.)

ScopeInsert.con[25]==

Statement: ’with’ WithClause ’do’ WithBody.

WithClause: ModUseIdent.

WithBody: Statement.

This macro is attached to a product file.

The WithBody is a special kind of range: The scope rules for our with statement require
that the scope of the module stated by the ModUseIdent is inserted in the environment
hierarchy between the scope of the WithBody and the environment formed by the range
nest that encloses the with statement. I.e. a definition in a range enclosing the with

statement may be hidden by a definition of the module; those definitions may be hidden
within the WithBody. (In the case of our language the WithBody may not directly contain
declarations, although deeper nested Blocks may contain such declarations.)

We use another library module (see Section “Inheritance of Scopes” in Specification Module
Library: Name Analysis) to support such an embedding of environments:

ScopeInsert.specs[26]==

$/Name/AlgInh.gnrc:inst

This macro is attached to a product file.

The facility of inserting an environment obtained from a scope property of an object is pro-
vided by the module role InhRange, which specializes RangeScope. The ModUseIdent estab-
lishes the inheritance using the module role InheritScope. The inserted outer scope is ob-
tained from ModUseIdent.Key, the inner scope is specified by the attribute WithBody.Env.
The computation of WithBody.GotInh is required to state that the inheritance is estab-
lished.

ScopeInsert.lido[27]==

SYMBOL WithBody INHERITS InhRange END;

RULE: Statement ::= ’with’ WithClause ’do’ WithBody COMPUTE

WithClause.InnerScope = WithBody.Env;

WithBody.GotInh = WithClause.InheritOk;

END;

SYMBOL WithClause INHERITS InheritScope, ChkInherit END;

RULE: WithClause ::= ModUseIdent COMPUTE

WithClause.ScopeKey = ModUseIdent.Key;

18 Tutorial on Name Analysis

END;

This macro is attached to a product file.

19

10 Classes with Multiple Inheritance

Our previous examples of modules and with statements can be easily combined to demon-
strate the scope rules for object oriented classes with multiple inheritance.

To avoid confusion with the so far specified scope rules we introduce a new language con-
struct for declaration of classes:

Class.con[28]==

Declaration: ’class’ DefIdent Inheritances ClassBlock ’;’.

ClassBlock: Compound.

Inheritances: Inheritance*.

Inheritance: ’:’ InheritIdent.

InheritIdent: Ident.

This macro is attached to a product file.

Applied identifier occurrences within the body of a class are bound to definitions of that
range, or to definitions that are visible due to inheritances from other classes (or modules),
or to definitions in the ranges that enclose the class declaration.

Hence, the scopes obtained from inheritances are inserted into the environment hierarchy
of the class body, as in the case of our with statements.

Since classes that are used for inheritance may inherit from other classes, the inheritance
relation must form a partial order. It must not be cyclic. A class c1 may inherit from a
class c2 via several paths through the inheritance relation.

That partial order governs hiding of definitions: A definition of an identifier a in the body
of a class c hides definitions of a in any class directly or indirectly inherited by c.

Hence, the scope property of a class is the scope of the class body embedded in the envi-
ronment of the inheritance relation for that class.

Wherever the class identifier is visible it can be used for qualified access, as introduced for
modules: A qualified access c::a identifies an a defined in the body of class c or in a class
inherited by c according to the inheritance relation.

These scope rules are specified using the techniques of the last two examples: A class
has a scope property, as a module has; and a class body inherits other scopes as our with
statement does. Hence, the ClassBlock combines the two roles ExportRange and InhRange

of the library module.

Class.lido[29]==

SYMBOL ClassBlock INHERITS ExportRange, InhRange END;

RULE: Declaration ::= ’class’ DefIdent Inheritances ClassBlock ’;’ COMPUTE

ClassBlock.ScopeKey = DefIdent.Key;

ClassBlock.GotInh = Inheritances CONSTITUENTS InheritIdent.InheritOk;

Inheritances.InnerScope = ClassBlock.Env;

END;

SYMBOL Inheritances: InnerScope: Environment;

This macro is attached to a product file.

20 Tutorial on Name Analysis

The Inheritances affect the scope of the class body, like the WithBody in the example
above. As there may be several Inheritances the attribute Inheritances.InnerScope is
accessed from each. The InheritIdent has the role InheritScope provided by the library
module for scope properties already used above. It adds each single inheritance to the
inheritance relation of the class scope specified by INCLUDING Inheritances..

The role InheritScope yields an attribute InheritOk. It indicates whether the inheritance
relation is not cyclic. It is checked by ChkInherit.

ClassInherit.lido[30]==

SYMBOL InheritIdent INHERITS

InheritScope, ChkInherit,

IdUseEnv, ChkIdUse, IdentOcc

COMPUTE

SYNT.ScopeKey = THIS.Key;

SYNT.InnerScope = INCLUDING Inheritances.InnerScope;

END;

This macro is attached to a product file.

It has also to be checked that the InheritIdent is bound to an object (class or module)
that has a scope property. The role ChkInherit defined above is reused for that purpose.

The library module for scope properties ensures that all relevant inheritances are considered,
all relevant scope properties are associated, and all relevant definitions are encountered,
before applied identifier occurrences are bound in the class body or in qualified accesses.

We now introduce an additional uniqueness requirement for inheritance: If an applied iden-
tifier occurrence is bound to a definition in an inherited environment there must not be a not
hidden binding of that identifier in another inherited environment. Such an alternative bind-
ing is checked by ChkInhIdUse for all IdUseEnv occurrences and by ChkInhIdUseScopeProp
for all IdUseScopeProp occurrences:

UniqueInherit.lido[31]==

SYMBOL UseIdent INHERITS ChkInhIdUse END;

SYMBOL TypeUseIdent INHERITS ChkInhIdUse END;

SYMBOL QualIdent INHERITS ChkInhQualIdUse END;

SYMBOL SelectIdent INHERITS ChkInhQualIdUse END;

This macro is attached to a product file.

21

11 Objects Having a Scope Type

This example demonstrates a typical situation where the tasks of name analysis and type
analysis are interleaved. Since type analysis is not the topic of this tutorial, we concentrate
on one aspect where it affects name analysis.

We extend our language by class variables. Such a variable is declared by v : c where c is
a class identifier. The variable v is a structure that has the components declared for c and
for the classes inherited by c.

With this extension class declarations can be considered as declarations of type names which
are used as type identifiers in variable declarations.

In order to access the components of a class variable, we introduce a selection construct
that is similar to the qualified access construct:

ScopeType.con[32]==

Operand: UseIdent ’.’ SelectIdent.

SelectIdent: Ident.

This macro is attached to a product file.

We here specify a very simple version of type analysis: Types are represented by
DefTableKeys. A property TypeOf associates a type with an object key:

ScopeType.pdl[33]==

TypeOf: DefTableKey;

This macro is attached to a product file.

The following computational roles specify how the TypeOf property is set and accessed in
proper order:

TypeModule.lido[34]==

ATTR Type: DefTableKey;

CLASS SYMBOL RootType COMPUTE

SYNT.GotType = CONSTITUENTS SetType.GotType;

END;

CLASS SYMBOL SetType COMPUTE

SYNT.GotType = ResetTypeOf (THIS.Key, INH.Type);

END;

CLASS SYMBOL GetType COMPUTE

SYNT.Type = GetTypeOf (THIS.Key, NoKey)

<- INCLUDING Program.GotType;

END;

This macro is attached to a product file.

Usually the defining occurrences of identifiers, DefIdent in our language, are the contexts
where the type of the object is specified. Hence they have the role of SetType.

As we here are only interested in types of variables, we specify a default unknown type
represented by NoKey. In variable declarations the type of the declared identifier is specified
to be the key of the type identifier.

22 Tutorial on Name Analysis

In the context of applied identifier occurrences, UseIdent, their type may be used for further
analysis. They have the role GetType.

ScopeType.lido[35]==

SYMBOL DefIdent INHERITS SetType COMPUTE

INH.Type = NoKey;

END;

RULE: VarDecl ::= TypeUseIdent DefIdent COMPUTE

DefIdent.Type = TypeUseIdent.Key;

END;

SYMBOL UseIdent INHERITS GetType END;

SYMBOL Program INHERITS RootType END;

This macro is attached to a product file.

The select construct combines the technique of using a scope property, as introduced for
qualified access (QualIdent above), and type analysis: SelectIdent has the QualIdUse

role. The identifier is bound in the scope associated with the type of the variable identifier.
SelectIdent.ScopeKey is specified to be the key that has the scope property.

SelectType.lido[36]==

SYMBOL SelectIdent INHERITS

QualIdUse,

ChkQualIdUse, IdentOcc

END;

RULE: Expression ::= UseIdent ’.’ SelectIdent COMPUTE

SelectIdent.ScopeKey = UseIdent.Type;

IF (EQ (SelectIdent.Scope, NoEnv),

message (FATAL, "module variable required for selection",

0, COORDREF))

;

END;

This macro is attached to a product file.

Similar to previous examples we have to check that the type of the variable really allows
selection.

	1 Kernel Grammar
	2 Basic Scope Rules
	3 Produce Output of Identifier binding
	4 Messages on Scope Rule Violations
	5 Predefined Identifiers
	6 Joined Ranges
	7 A Second Name Space
	8 Scopes being Properties of Objects
	9 Insertion of Scopes into the Environment Hierarchy
	10 Classes with Multiple Inheritance
	11 Objects Having a Scope Type

