Execution Monitoring Reference

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences
Macquarie University
Sydney, NSW 2109
Australia

Copyright, 1994-1999 Anthony M. Sloane

Table of Contents

1 Using Noosa..................................... 3
1.1 Invoking NOOSaouuuuiiii i e 3
1.2 Controlling Your Program oot 3
1.3 User Initialisation ... 3
1.4 Changing files from within Noosacooiiiiiaan... 4
1.5 X resources used by NooOSa.........covviiiiiiiiiiiiiin.. 4

2 Inmformation...................... ... 7
2.1 Input Text Display ... e 7
2.2 M ESBaZES « o v vttt 7
2.3 String Table. 8
2.4 Lexical Structurecoiiiiiiiii 8
2.5 Phrase Structure i 8
2.6 Trees and Attribute Values i, 9
2.7 Breakpoints and events.............o i 10
2.8 Frequency Profiles....... i 11
2.9 Time Profiles. 11
210 Tracing Events . ..o 12

3 Implementation 13
3.1 Monitoring Interfaces....... ... 13

311 ASPECES ot 13
3.1.2 Event Types....con i 13
3.1.3 Operationsuiiiiiii it 14
3.1.4 Header Files. ... 15
3.1.5 Non-standard types.........ccoeviiiiiiiiiiiiiiiiiieeaa... 15
3.1.6 Browsing non-standard typeso 17
3.2 Implementing Monitoring Interfaces......................... ... 19
3.3 Monitoring Database i i 19
3.4 Adding Monitoring Support To A Component.................. 20
3.5 Supporting Profiling........ i 20
3.6 Dapto Grammar.o.uuiiinte i 21

This manual describes how to use the Noosa monitoring system to diagnose problems in
Eli-generated programs or simply to observe their behaviour. While this manual provides
general information about the system and the types of information that can be obtained,
the reader is directed to the Noosa online help for more specific information on how to
operate the user interface. (See the Help menus in most windows.)

1 Using Noosa

This chapter describes how to invoke the Noosa system and run your program under the
control of Noosa.

1.1 Invoking Noosa

Noosa is invoked from within Eli using any of the :mon, or :mongdb products in conjunc-
tion with the +monitor parameter. See Section “Monitoring” in Products and Parameters
Reference Manual, for details on how to use these products. Because Noosa is based on an
X11 window system toolkit, you must be running an X session when Noosa is invoked.

Invoking Noosa will produce a window containing two main areas: an input text window
and a transcript window. Noosa has a fairly conventional menu-based interface. See the
Help menus in most windows for general information about how to use Noosa and to get
specific descriptions of all menu commands.

The most important menu command to know at this stage is Quit in the main Noosa
menu since it gets you out of Noosa when your monitoring session is over. You will then be
able to resume your interactive Eli session.

1.2 Controlling Your Program

The text entry area just under the menu bar in the main Noosa window contains the name of
your program and command-line arguments. Normally you shouldn’t need to worry about
the name of your program. It will be set by Eli and will refer to a file in your Eli cache.

The program arguments will be as specified using the +arg parameter when you invoked
Noosa (see Section “arg” in Products and Parameters Reference Manual). If you didn’t
specify +arg then the program will not be given any command-line arguments when run.
The arguments can be edited in the text entry; there is no need to exit Noosa and re-enter
with a new +arg setting if the argument values must be changed. You can specify as many
+arg parameters as you like; their values will all be passed as command-line arguments.

Use the Execution menu to control the execution of your program by running it (Run
command), continuing from a stoppage (Continue) or killing the process entirely (Kill). For
convenience the same menu can be obtained by pressing the middle button in either the
input text window or the transcript window. These commonly used commands are also
available via the keyboard shortcuts A1t-R, A1t-C, and Alt-K, respectively.

1.3 User Initialisation

When Noosa begins execution it loads user initialisation files called .noosarc from the
user’s home directory and the current directory in that order (if they exist).

A .noosarc can contain arbitrary Tcl/Tk code to initialise the Noosa system. A com-
plete description of the Tcl language and Tk toolkit is beyond the scope of this manual.
See the Tcl/Tk online manual pages or any of the available books for details.

The .noosarc interface is presently mostly undocumented. Future versions of this man-
ual will describe in detail how Noosa can be configured using a .noosarc file.

One facility that is documented is the ability to use a .noosarc file to autoload event
handlers. The Handlers window allows you to save the current state of your handlers in a

4 Execution Monitoring Reference

file. Suppose that you save them in myhandlers.hnd. That file can loaded on startup by
placing the following lines in a .noosarc.

source myhandlers.hnd

Noosa also loads any files of type tcl that are present in your Eli specifications. You can
provide any extra monitoring support you need in these files. See Section 3.1.6 [Browsing
non-standard types], page 17, for information on how to provide Tcl support for browsing
your own data types.

1.4 Changing files from within Noosa

It is often useful to be able to edit files while monitoring your program. For example, you
might want to change the test data being used, or you might want to fix bugs in your
specifications before you forget about them. The Files command in the Windows menu
brings up a window from which you can open arbitrary files and edit them.

If you change your specifications while monitoring, Eli will only notice the changes if
you have the VerifyLevel variable in Eli set to 2. (See Section “Variables” in ui, for more
information on influencing Eli with variables.)

1.5 X resources used by Noosa

Noosa is written using the Tk X11 toolkit. Thus you can set any X11 resources that Tk
supports. These include settings for the fonts used in various types of window, the colours
used to highlight various regions, and so on. For complete documentation of the resources
that Tk supports, see the Tk documentation.

To illustrate the use of Tk resources, suppose that you want to change the fonts used
for text and entry windows, and alter the colours used for the selection (Noosa default:
red background and yellow foreground). The following settings might be used in your
.Xdefaults file.

Noosa*Text.font: —adobe-courier-bold-r—*—*k—12-%—k—k—k—k—x—x
Noosa*Entry.font: —adobe-courier-bold-r—*—*k—12-%—k—k—k—k—x—x
Noosa*selectBackground: blue

Noosa*selectForeground: green

To make common situations easier, Noosa also supports some specific resources.

Noosa.width
The width in characters of text windows except file windows (see below) (de-
fault: 80).

Noosa.inputHeight
Noosa.transHeight
The height in lines of the input and transcript windows (default: 15 and 15).

Noosa.handHeight
The height in lines of the text part of the handlers window (default: 20).

Noosa.fileWidth

Noosa.fileHeight
The width in characters and the height in lines of the file editing windows
(defaults: 80 and 30).

Chapter 1: Using Noosa 5

Noosa.treeWidth

Noosa.treeHeight
The width and height in pixels of the tree windows (see also below) (defaults:
400 and 300).

Noosa.valueColour
The colour used to highlight values in the transcript window that can be opened
(default: blue).

Noosa.nodeColour
The colour used to highlight nodes in the abstract tree displays (default: red).

Noosa.treeFont
Noosa.treeFontSize
The font used to describe the tree nodes (default: TkFixedFont, 10).

Note that in each case the width and height of a window is the actual display area of
the window, not including any borders.

Noosa also allows fine-grained control over the sizes of the various tree displays. The
following resources control the sizes of the four different types of tree display. If these
resources are not set, the values of Noosa.treeWidth and Noosa.treeHeight are used.

treeFullWidth, treeFullHeight, treeSrcWidth, treeSrcHeight, treeCompWidth,
treeCompHeight, treeIncrWidth, and treeIncrHeight.

2 Information

This chapter briefly describes the type of information that Noosa can provide about the
execution of your program and how to go about getting it.

2.1 Input Text Display

Usually the initial input to an Eli-generated program is specified on the command-line of
the processor (see Command Line Processing) and subsequent input (if any) is given by the
input text itself (perhaps via include directives or similar mechanisms).

Noosa displays the input text as seen by your program in the top part of the main
window. (The current Noosa system does not fully support the monitoring of programs
when their input is standard input.) The input text is shown ezactly as your program sees
it. In particular, it appears as one contiguous piece of text rather than (say) a set of files
included into other files. Note also that when the program stops, the input text displayed
is the text that has been seen by the program at that point. Text encountered later on
(perhaps by later include directives) will be displayed when it is encountered.

In various settings Noosa will display input text coordinates (e.g., when you ask to see
the lexical tokens recognised). There are two formats used to display coordinates:

12,3
9,1-12,80

The first form indicates a single coordinate (column three of line twelve); the second in-
dicates a range of coordinates (column one of line nine through to column eighty of line
twelve, inclusive).

In the transcript window coordinates or coordinate ranges will be underlined. Clicking
the left mouse button on a displayed coordinate (or range) causes Noosa to highlight the
coordinate (or range) in the input text. This enables you to conveniently match Noosa
output to input text.

As mentioned above, the input to your program may come from more than one text file.
The coordinates used by Noosa are cumulative in that they reflect the overall input text,
not the individual text files. To find out from which file a location comes, select the location
in the input text window and execute the Describe coord command from the Examine menu
(also available on the right button in the main windows).

2.2 Messages

Eli-generated programs take text as input, analyse that text, and perhaps produce some
text as output. During analysis, messages may be produced for a variety of reasons. Eli
provides a module to help generate messages (see Section “Error” in Library Reference
Manual).

If your program generates any messages they will be displayed in the transcript window.
The coordinate of the message will be shown with the severity and the message text.

8 Execution Monitoring Reference

2.3 String Table

Most Eli-generated programs need to manipulate text strings. To avoid the overhead of
copying strings around during execution, a string table can be used. Eli has a module
that implements a string table allowing integers to be used to represent strings (see Section
“Storage” in Library Reference Manual).

Noosa allows you to see the contents of the string table using the Strings command
from the Examine menu. Each string in the table will be displayed with its index. The
String command can be used to display a single particular string. Select the numeric string
index with the mouse then execute String. This mode of use is particularly useful if the
string index has already been displayed by Noosa in some other setting (e.g., as the intrinsic
attribute of a token).

2.4 Lexical Structure

Eli-generated programs that perform lexical analysis can do so using the support of an
automatically-generated lexical analyser (see Lexical Analysis). Noosa lets you examine
the behaviour of the generated analyser on your program’s input text.

Your program will generate a stream of tokens. Selecting an input text coordinate (or
range of coordinates) in the input text window and executing the Token command from
the Examine menu will cause Noosa to display the tokens recognised that overlap that
coordinate (or range).

The following information is displayed for each token: input text coordinate range, nu-
meric token code used internally by the analyser, length in characters, the intrinsic attribute
value of the token, the input text (lexeme) matched by the token, and, for non-literal to-
kens, the name of the non-literal as specified in your type-gla specifications (see Section
“Specifications” in Lexical Analysis).

2.5 Phrase Structure

Programs that need to determine the phrase structure of their input can do so within Eli
using automatically-generated parsers (see Syntactic Analysis).

The Noosa Phrase command (in the Examine menu) lets you look at the phrase structure
that is recognised by your parser. Selecting an input text coordinate in the input text
window and executing Phrase will produce a list of all the production instances recognised
by your program that overlap the selected coordinate.

The instances are listed from most general to most specific, so the first one is always the
root production of the grammar. Each production instance is displayed with the input text
coordinate range for that instance. On the right-hand side of each production the symbol
corresponding to the left-hand side of the following production is highlighted. (Note that in
some cases chain production elimination is performed by Eli-generated parsers. This may
mean that the highlighted symbol on the right-hand side of a production instance is not
the same symbol as the left-hand side of the next production instance.)

Examination of the phrase structure with Noosa will work if you are using either the PGS
or COLA parser generating systems available within Eli (see Section “parser” in Products
and Parameters Reference Manual).

Chapter 2: Information 9

2.6 Trees and Attribute Values

If your processor contains attribution, Eli will automatically construct an abstract tree for
the input text. Noosa has facilities for examining this tree and any other trees computed
by your processor.

Tree display can be enabled using the Trees item in the Windows menu. Windows
containing the selected trees will appear next time the program is run. There are four
options in the Trees menu: Just Source, Separate Computed, Source and Computed, and
Incremental. Any combination of these options can be used.

The first three options draw trees in a traditional tree manner with the root at the top
and children under their parents. The Incremental option draws the root at the left and
children to the right of their parents. The former style always uses a nice layout but always
draws the whole the tree (but see below); the latter initially just draws the root of the tree
but allows nodes to be selectively expanded (see the online help for details).

The Just Source option causes the source tree built by your processor’s parser to be
displayed. The Separate Computed option will cause each computed tree to be displayed
in a separate window as soon as they are complete. This option is most suitable if you
have a few largish computed trees. The Source and Computed option shows the entire tree
(including computed trees joined at the appropriate places) so it is more suitable if you
have many smaller computed trees. Finally, the Incremental display allows access to the
entire tree that has been computed so far.

The tree displays can be saved as Postscript via the Tree menu. You can elect to save
just the visible portion of the tree or the whole tree.

In any of the tree displays it is possible to select nodes with the left button. The abstract
grammar production derived at that node will be displayed in the transcript window and
the input text extent of the node will be highlighted in the input text window.

Also, the right button can be used on a symbol (rule name) to display a menu listing the
attributes (attributes and terminal values) of that occurrence of the symbol (rule). Each
attribute or terminal has a pull right menu with which you can indicate whether you want
to see its value (with optional stopping of execution) or ignore it (the default). Using this
facility you can check that your attribution is working correctly. Note that values will only
be displayed when they are next calculated, so you will need to run the program again after
selecting some values for display.

Note: The current version of Noosa is not able to deal properly with chain attributes.
Chain attributes will show up in the attribute menu as a pair of regular attributes with
_pre and _post appended to the attribute name. It is possible to select these attributes
for display. However, in the current system, not all will be displayed because of limitations
in the generated processor code.

Noosa has a simple mechanism for displaying the values of attributes in the transcript
window. Values are displayed preceded by their type name. If a value can be browsed (or
“opened”) it will be underlined and browsing is performed by clicking on the value with the
left button.

Eli currently has support to allow the following types of value to be browsed.

10 Execution Monitoring Reference

Tree nodes (Node, NODEPTR)
Clicking on a tree node value causes your abstract tree display(s) (if any) to
highlight that node. A NODEPTR value is a run-time pointer to a tree node.
Clicking on one of these values will select the corresponding node in a tree
display if it is there.

PTG nodes (PTGNode)
Opening a PTG node causes the system to run the function PTGOutFile on the
node and display the resulting output in the transcript window. Note that due
to side-effects in PTG functions or redirected output, the text displayed may
not be same as the text finally output by your processor.

Environments (Environment)
Opening an environment produces in the transcript a list of the name-key pairs
in that environment. If the environment is nested within another environment
then the parent environment is printed so that it can be browsed as well.

Bindings (Binding)
Opening a binding will produce the identifier that is bound (Idn0f), the key to
which it has been bound (Key0f), and the environment containing the binding
(EnvOf).

Definition table keys (DefTableKey)
Opening a definition table key will produce a list of the current properties of
that key and the values of those properties.

OIL types and typesets (tOilType, tOilTypeSet)
These types are used for operator identification. Opening an OIL type shows
the type name (a definition table key). Opening an OIL typeset shows the
elements of the set and their associated costs.

Tree parser nodes (TPNode)
Opening a tree parser node will produce the node name and a list of its children.

2.7 Breakpoints and events

Noosa follows the progress of your program using events. When a significant thing happens
during execution the program will generate an event to signal that fact to the monitoring
system. Event instances have parameters which allow them to provide arbitrary information
to the monitoring system.

Breakpoints in the Noosa system are conceptually similar to breakpoints in source-level
debuggers, but operate at the level of events rather than source code locations, functions
or variables. They are implemented by attaching handlers to event types.

The Handlers command in the Windows menu creates a dialog window through which
you can enter handlers for the different types of events that your program may produce
during execution. A list of relevant event types is displayed and handlers can be entered,
edited, deleted etc. (See the Help menu in the Handlers dialog for more information.)
Handlers can also be saved to files and autoloaded, see See Section 1.3 [User Initialisation],
page 3.

Chapter 2: Information 11

Handlers are expressed using the Tool Command Language (Tcl). (A complete descrip-
tion of TCL is beyond the scope of this manual. See the Tcl online manual pages or any
book on Tcl/Tk for details.) Handlers can contain arbitrary Tcl code and may refer to
the event parameters as Tcl variables. To cause execution to stop as the result of handler
execution, have the handler call the Tcl n_break command.

For example, the following handler causes execution to stop if the string printf is stored
into the string table. This handler would be attached to the string_stored event.
if {$string == "printf"} {
n_break

}

There is no requirement that a handler actually cause execution to stop. It may just
display information and allow execution to continue. Within a handler, the builtin Noosa
command n_say may be used to display information in the Noosa transcript window.

For example, the following handler causes the lexeme of every token on line three of the
input to be displayed. This handler would be attached to the token event type thereby
making the linebeg and lexeme parameters available.

if {$linebeg == 3} {
n_say "lexeme is $lexeme\n"

}

All Eli-generated programs prepared for monitoring automatically generate a single event
instance of type init at the beginning of execution, and one of type finit at the end of
execution. This can be useful if you want to collect some information using handlers during
execution and display a summary at the end using a handler on the finit event type.

2.8 Frequency Profiles

Frequency profiles provide information about the frequency of events generated by your
program. When execution stops, a summary of events generated up to that point will be
produced. The summary contains the name of each event type generated and the count of
the number of times events of that type were generated by a particular component of the
program.

Frequency profiles are enabled and disabled by the Frequency profile checkbutton in the
Profile menu. By default they are disabled. The Zero frequencies command can be used to
set all of the frequencies to zero. This can be useful if you only want to collect frequencies
from a particular point during the execution.

2.9 Time Profiles

Time profiles provide information about the CPU time spent in components of your pro-
gram. For each component the CPU time in seconds is given with the percentage of total
CPU time due to that component.

Time profiles are enabled and disabled by the Time profile command in the Profile menu.
By default they are disabled. The Reset times command can be used to set all of the times
to zero.

Time profiles are obtained by generating an enter event each time execution enters the
code for a component, and a leave event when execution leaves again. Consequently, time

12 Execution Monitoring Reference

is only allocated to components which have appropriate monitoring support. Currently, the
main components within Eli have this support, but not all components do. Also, due to
the short running time of most Eli-generated programs on test input, the times reported in
a time profile are likely to vary considerably from run to run due to the granularity of the
timing mechanisms. Consequently, time profiles should only be relied on when using large
inputs or running time is larger for some other reason.

2.10 Tracing Events

Sometimes it is useful to see the event stream generated by your program. The Event trace
command in the Profile menu provides this capability. When tracing is enabled Noosa will
display the event type and parameters of every event generated by the program until it
stops.

The Set event filter command allows subsets of events to be selected using a regular
expression. A dialog box allows you to set a new expression or clear an old one. Executing
the Set event filter command will cause subsequent tracing to display an event only if the
event information matches the regular expression. The default regular expression is .*
meaning all events are displayed.

13

3 Implementation

This chapter describes some of the implementation of Noosa in detail. Eli users who just
want to perform monitoring with existing monitors do not need to read this chapter. It is
intended for Eli developers or advanced users who want to extend the capabilities of Noosa.

3.1 Monitoring Interfaces

Noosa needs to obtain information from the running program. It uses the program’s moni-
toring interface to do it. A program’s monitoring interface is the union of all of the monitor-
ing interfaces of the components making up that program. The contents of the monitoring
interface for a component depend on the nature of the component and the information that
it wants to make available to the monitoring system.

Monitoring interfaces are described by type-dapto files. (See Section 3.6 [Dapto Gram-
mar], page 21, for the syntax of the Dapto language.) Dapto files contain the information
described in the following. Examples are taken from the monitoring interface for the string
table module in Eli (see the file pkg/Adt/csm.dapto in the Eli distribution).

In the following discussion, two pre-defined data types: int and str are used. These
correspond to the C data types int and char *, respectively.

3.1.1 Aspects

All elements of a monitoring interface are grouped together into aspects (similar to a mod-
ule). The names of aspects are used to enable the monitoring system to decide what
components are present in the program. Some monitoring commands are only applicable to
programs which provide the aspects on which the monitor depends. For example, the Phrase
command can only be used on programs that contain parsers. See Section 3.3 [Database],
page 19, for more details on this mechanism.

An aspect syntactically encloses the interface elements which it contains.

aspect string;
Interface elements of the string aspect
end;

3.1.2 Event Types

Event types are described in a monitoring interface by giving their names plus the names
and types of their parameters. We also enforce the inclusion of documentation strings for
each of these entities to enable the user interface to provide readable descriptions of events
where necessary.

The string table monitoring interface contains one event, string_stored, which is gen-
erated whenever a string is inserted into the table. Consequently we have the following
event description in the monitoring interface:

event string_stored* "Storage of a new string in the string table"
(int index "Index of new string", str string "New string");

Normally event types are assumed to be hidden from the user. If you want the events
of a particular type to be visible to the user through the Handlers window, it is necessary
to append a * to the name of the type, as is done in the example above.

14 Execution Monitoring Reference

3.1.3 Operations

Operation signatures are described in the monitoring interface by giving the name of the

operation, its parameters (if any), its return type (if any), along with documentation strings.

Currently the return type of an operation must be str or there must be no return type.
Here is the signature for the string table get_string and set_string operations:

operation get_string "Look up a string given its index"
(int index "Index of the string to be looked up") : str

operation set_string "Change the value of a stored string"
(int index "Index of string to be changed",
str value "New value for string")
Operation implementations are given in C following the operation signature. Any legal
C code can be used in an operation definition, except that C return statements should not
be used and to return values from an operation you must use the following macros:

DAPTO_RESULT_STR(char *s)
Append the string s to the result to be returned by this operation.

DAPTO_RESULT_INT(int i)
Append the integer i as a string to the result to be returned by this operation.

DAPTO_RESULT_LONG(long 1)
Append the long integer 1 as a string to the result to be returned by this
operation.

DAPTO_RESULT_PTR(void *v)
Append the arbitrary pointer v to the result to be returned by this operation.
The value will be passed as a long integer and won’t be interpreted by Noosa. To
be useful, this value must later be passed back to another part of the monitoring
interface where it can be used as a pointer again.

DAPTO_RETURN
Return the current result as the value of this operation.

Use of the DAPTO_RESULT macros sets up a value that is returned when the end of the
operation is reached. To return from the middle of an operation use the DAPTO_RETURN
macro with no arguments.

For example, the following is the full definition of the get_string operation:

operation get_string "Look up a string given its index"
(int index "Index of the string to be looked up") : str

{
if ((index < 0) || (index >= numstr)) {
DAPTO_RESULT_STR ("**x Illegal string table index *okk!)
} else {

char *s = string[index];
if (s == (char *) 0) {

DAPTO_RESULT_STR ("#x* No string at this index **x");
} else {

DAPTO_RESULT_STR (s);

Chapter 3: Implementation 15

¥

The DAPTO_RESULT macros for integer, long and pointer values should only be used with
arguments whose addresses can be taken. For other values (e.g., return values from function
calls or the values of expressions) there are analogous macros whose names are formed by
appending VAL to the macro name. For example, the first of the following calls will not
compile; the second must be used.

DAPTO_RESULT_INT (i + 1);
DAPTO_RESULT_INTVAL (i + 1);

The VAL forms of the macros can always be used, but they incur the cost of an extra copy
compared to the non-VAL form.

3.1.4 Header Files

When writing the operation and translation parts of a monitoring interface it is often
necessary to refer to C entities exported by other modules. To enable the implementation
of the monitoring interface to access these other interfaces it is necessary to include them in
the monitoring interface description. Interfaces are included by simply naming the header
files which contain them.

The string table monitoring interface uses some standard C library functions, C string
functions and entities made available by the string table module. Consequently the interface
also includes the following lines:

<stdlib.h>
<string.h>
"csm.h"

3.1.5 Non-standard types

By default, Dapto can handle the built-in types int and str. If you want to pass a value
of some other type to an operation or receive such a value as an event parameter you need
to tell the system about it. If you don’t do anything then the values will be passed as the
string "unknown".

Even if you do not add new operations or events involving non-standard types you
probably want to provide proper monitoring support for them anyway. The reason is that
other parts of the system may need to report values of these types to Noosa. Most notably,
the attribute evaluator generates events whenever attributes are evaluated. If you want to
be able to monitor attributes of non-standard types then you must add proper monitoring
support for these types or the attribute values will be reported as "unknown".

The rest of this section explains what you need to do to monitor values of a non-standard
type. It talks about the monitoring interface and associated support. The next section
describes how you might go about displaying values in the Noosa transcript window for
user browsing.

The following information is based on the monitoring support for environment values
in the current Eli system. The environment module has the following monitoring interface
containing a couple of events and an operation (see the file pkg/Name/envmod.dapto in the
Eli distribution).

16 Execution Monitoring Reference

aspect envmod;
"envmod.h"

event env_created* "An environment value has been created"
(Environment env "The environment that was created",
Environment parent "The parent environment (if any)");

event binding made* "A binding has been made in an environment"
(Environment env "The environment in which the binding was made",
int idn "The identifier that was bound",
DefTableKey key "The key to which the identifier was bound");

operation get_scope_info

"Return the parent environment of an environment and its idn-key bindings"|i

(Environment env "The environment to be searched") : str

{
Scope s;
DAPTO_RESULT_PTR (env->parent);
for (s = env->relate; s != NoScope; s = s—>nxt) {
DAPTO_RESULT_INT (s->idn);
DAPTO_RESULT_PTR (s->key);
}
}
end;

As is conventional in a monitoring interface, the events are used to notify Noosa of
important changes to the environment values as they occur. The operation is used to
allow Noosa to get the complete contents of an environment. Providing both events and
operations in this style is a good idea because the events allow fine-grained control via
breakpoints and handlers while the operation can be used to implement value browsing.

Note that the operation implementation can use any C code it likes to determine the
appropriate information and return it to Noosa. In this case we use the fields provided by
the environment module to return the parent environment and all of the integer-key pairs.

Since Environment and DefTableKey values are passed as event and operation parame-
ters we need to tell Dapto how to pass them. In the following we just talk about environment
values. Support for definition table keys is similar.

When Dapto generates the event generation code for an event parameter of unknown type
it attempts to use a macro of the form DAPTO_RESULTx where z is the name of the parameter
type. Thus to get the value passed correctly you need to define this macro. Usually the
definition is placed in the header file that defines the type itself. E.g., envmod.h contains
the following definition.

#define DAPTO_RESULTEnvironment(e) DAPTO_RESULT_PTR (e)
which says that an environment value should be sent from the running program to Noosa
as a pointer (since it is a pointer).

Chapter 3: Implementation 17

Similarly, to permit values of this type to be sent from Noosa to the running program
(as operation parameters) you need to define a macro whose name is DAPTO_ARGx. For
example, for environments we define the following macro.

#define DAPTO_ARGEnvironment (e) DAPTO_ARG_PTR (e, Environment)

which says that it should be received as a pointer. In the definition of the macro, the second
parameter is the type of the value. It is used to cast the received value to the appropriate

type.

3.1.6 Browsing non-standard types

Once you have Noosa and the running program correctly passing values of a non-standard
type back and forth, you usually want to see those values in the Noosa transcript. If the
values are structured, you will also want to add browsing support for them.

Adding browsing support for a non-standard type involves writing Tcl code that will
be invoked whenever a value of this type is browsed. The procedure can be automatically
loaded into Noosa by placing its definition in a startup file (see Section 1.3 [User Initiali-
sation], page 3). Alternatively, it can be placed in a file of type tcl and included in your
specifications. At startup Noosa will load all files of this type.

The Noosa transcript is a general text display area, so you can use n_say to display
whatever you like (it always displays at the end). As a special case if you display something
of the form t:v where ¢ is the name of a type which has browsing support, then the value
v will also be browsable. In general it’s a good idea to arrange for values to be prefixed by
their type in this way even if no browsing support is currently available. The type provides
a valuable clue to the user and if browsing support is added later it will available here
without you having to do anything.

Here is a slightly simplified version of the Tcl support used by Eli to support browsing
of environment values.

set n(Environment,desc) "Identifier scoping environment"

proc n_Environment_say {env} {
n_say "Environment:0x[n_dectohex $env]"

¥

proc n_Environment_open {text env} {
n_say "$text"
if {$env == 0} {
n_say "\n NoEnv\n"
} else {
set env [n_hextodec $env]
set r [n_send get_scope_info $env]
if {[lindex $r 0] != 0} {
n_say " (parent: "
n_Environment_say [lindex $r 0]
n_say ")"
}
set r [lreplace $r 0 0]

18 Execution Monitoring Reference

n_say "\n"
set ¢ O
foreach {i j} $r {
n_say " "
n_say_val DefTableKey $j
set s [n_send get_string $il
n_say " $s\n"

incr c
b
if {$c == 0} {

n_say " No bindings\n"
}

¥

The first set command sets a documentation string that will be used to display an
information message at the bottom of the Noosa window whenever the user moves the
mouse over a value of this type in the transcript window. In general, for a type = you need
to set the array element n(x,desc) in the global scope.

The procedure n_Environment_say is used by Noosa to display values of this type. Since
Environment values are pointers, the code displays them in hex to facilitate cross-referencing
with values displayed by a source-level debugger. The Noosa library procedure n_dectohex
is used to obtain the hexadecimal representation of the value. If n_Environment_say did
not exist, values would be displayed in the style t:v where t is the type and v is the value
in decimal.

The procedure n_Environment_open is invoked whenever the user clicks on a value of
this type in the transcript window. In general, the procedure name must be n_x_open where
z is the type name. The existence of this procedure is taken by Noosa as an indication that
values of type = should be browsable. The procedure gets two parameters; the first is the
complete text that the user clicked on (which includes the type name) and the second is the
value part of that text. In this case the second parameter will be the environment value of
interest.

The implementation of this procedure first displays the clicked-on text to identify the
subsequent output because the browsable value may be a long distance from the bottom
of the transcript where the output will be displayed. A null environment is displayed in a
standard way to match the user’s view of the module.

Non-null environments are converted by n_hextodec into decimal before being passed to
the get_scope_info operation defined in the environment module monitoring interface (see
Section 3.1.5 [Non-standard types|, page 15). This operation gets the parent environment
and the integer-key pairs as a Tcl list. The Noosa procedure n_send is used to invoke the
operation with the environment value as the sole parameter.

When the get_scope_info operation returns, the n_Environment_open procedure goes
on to display various information in the Noosa transcript window. Strings are displayed
using n_say. The parent environment (if there is one) is displayed using n_Environment_
say so that it is displayed in a style consistent with other environments.

Chapter 3: Implementation 19

All of the integer-key pairs in the environment are displayed. The routine n_say_val
is used to display the keys. It is passed the type of the value and the value itself. n_say_
val separates the decision about how to display keys from other code. n_say_val just
dispatches to n_DefTableKey_say if it exists.

Note that we don’t display the integers as-is, we use the get_string operation from the
string storage module to convert them to strings which is generally more helpful. Note:
arguably this is a bug since it’s possible to use the environment module with integers that
are not string table indexes.

3.2 Implementing Monitoring Interfaces

A type-dapto file defines the monitoring interface of a component. (See Section 3.6 [Dapto
Grammar]|, page 21, for the syntax of the Dapto language.) The dapto program turns these
interfaces into code that can be incorporated into a program that we want to be able to
monitor. Dapto does two main things:

1. Generates a type-c file and a type-h file containing an implementation of the monitoring
interface given by its input type-dapto file.

The type-c file will contain routines to enable the monitoring system to invoke data
operations and receive the results. The mechanisms by which this happens are beyond
the scope of this manual.

Also contained in the type-c file will be one function definition for each event type
defined in the monitoring interface. For each event type X there will be a function
_dapto_X that has parameters corresponding to the parameters of X. (See (undefined)
[Monitoring support], page (undefined), for details on how to use this function.)

The type-h file generated by dapto will contain the externally visible interface of the
type-c file.

2. Generates a type-db file containing a monitoring database with information about the
monitoring interface. This file is a TCL script that sets up data structures for use by
the monitoring system. It is used to let the monitoring system know which aspects are
provided by the monitoring interface and which events are contained in those aspects.
See Section 3.3 [Database|, page 19, for more information on how the database is used.

The names of the generated files depend on the name of the input file; csm.dapto will
produce csm_dapto.c, csm_dapto.h and csm_dapto.db.

3.3 Monitoring Database

A monitoring database is generated by Dapto from a monitoring interface description (see
Section 3.2 [Implementing Interfaces], page 19). The concatenation of the monitoring data-
bases for all of the components present in a program comprises the monitoring database for
the program.

The monitoring database is simply a TCL file which, when loaded by Noosa, provides
information about the aspects and events of the monitoring interface. For example, the
monitoring database for the string table monitoring interface (see Section 3.1 [Monitoring
Interfaces], page 13) yields the following database (reformatted slightly):

lappend n(aspects) string

20 Execution Monitoring Reference

lappend n(events) \
[list string_stored "Storage of a new string in the string table" \
{ index "Index of new string" string "New string" } 1]

The global TCL lists n(aspects) and n(events) are used to store the database informa-
tion. n(aspects) contains a list of the all of the aspect names contained in the program.
n(events) is a list of lists; each sub-list contains the name and documentation strings for
a single event type and its parameters, plus a flag which is 1 if the event is visible to the
user and 0 otherwise.

3.4 Adding Monitoring Support To A Component

Once you have a monitoring interface implementation for a component you must add mon-
itoring support to the component itself. This support consists entirely of calls to the event
generation routines for any events you have in your interface (see (undefined) [Monitoring
interfaces|, page (undefined), and see (undefined) [Implementing interfaces|, page (unde-
fined)). If you have no events in your interface, the code of the component does not need
to be changed.

Adding event generation to a component is a matter of adding calls to event generation
routines at the appropriate places. The details of this will depend on the component, but
the idea is to insert the calls at places where the action which the event represents can be
said to have taken place. Any necessary event parameters should be passed to the event
generation routine.

To enable a monitoring-free version of the component to be easily produced, the con-
vention is that all additions purely for the purpose of monitoring be conditionalised by
#ifdef MONITOR
#endif
The following examples are based on monitoring support for the Eli string table com-
ponent. The component must be modified to include the C interface to the monitoring
interface:
#ifdef MONITOR
#include "csm_dapto.h"
#endif
Then we must identify places in the code where string_stored events must be gener-
ated. There is only one of these, at the end of the routine stostr, so we add the following
code to generate the event with the appropriate parameter values:
#ifdef MONITOR
_dapto_string_stored (numstr, string[numstr]);
#endif

When the component is compiled by Eli with the ~-DMONITOR compiler option (implied
by the +monitor parameter), this monitoring support will be included.

3.5 Supporting Profiling

Noosa contains support for two kinds of profiles (see (undefined) [Frequency profiles],
page (undefined), and see (undefined) [Time profiles|, page (undefined)). To support pro-

Chapter 3: Implementation 21

filing of a component it is necessary to add extra event generation to a component. It is
necessary to generate an enter event whenever execution enters the code of the component
and a leave event whenever execution leaves the code of the component. These events have
the following signatures:

event enter "Enter a program component"
(str name "Name of component");

event leave "Leave a program component"
(str name "Name of component");

For the string table component we would add the following code to the beginning of each
string table routine:

#ifdef MONITOR
_dapto_enter ("string");
#endif

and the following code at each exit point of each string table routine:

#ifdef MONITOR
_dapto_leave ("string");
#endif
The event parameter (“string” in this case) is used by the profile monitoring code to identify
the component.

3.6 Dapto Grammar

The following context-free grammar defines the syntax of the Dapto language. ident is an
identifier in the C style. Identifier definitions are required to be unique within a specification
and within event and operation blocks. str and bstr are strings delimited by double quotes
and angled brackets, respectively. text is arbitrary text delimited by braces.

spec: aspects.

aspects: aspect’stmt / aspects aspect stmt.
aspect ‘stmt: ‘aspect’ iddef ‘;’ sigs ‘end’ ‘;’.

sigs: sig / sigs sig.
sig: event'sig / operation’'sig / str / bstr.

event sig: ‘event’ iddef export str event 'block ;.
event ‘block: ‘(’ optattrs ‘)’.

export: ‘¥’ / /* empty */.

optattrs: /* empty */ / attrs.

attrs: attr / attrs ‘,’ attr.

attr: typeid iddef str.

operation’sig: ‘operation’ iddef str operation block text /
‘operation’ iddef str operation block ‘:’ typeid text.

operation 'block: ‘(C optparams *)’.

optparams: /* empty */ / params.

params: param / params ‘,’ param.

22

param: typeid iddef str.

iddef: ident.
iduse: ident.
typeid: ident.

Execution Monitoring Reference

Index
.dapto file format................ 21
B o Yo T T s of 3

A

Argumentsttt 3
ASPECE . 13
attribute values...................... ... 9
autoloading handlers 3, 10

B

Bindings (Binding) 10
breakpoints.............. ...l 10
browsing attribute values..................... 9
browsing chainvalues......................... 9
browsing non-standard types................. 17
browsing the abstract tree.................... 9

C

C return statementsooiiiaan. 14
chain attributes...................iia 9
changing a component 20
COLA parser generating system................ 8
COLOUTS .o v ittt i 4
command-line options.......................... 3
Continue command..................... 3
controlling execution......................... 3
controlling program..................ooouun... 3
cumulative coordinates........................ 7
customisation........... ... il 3

D

dapto file format............................. 21
dapto scoping rulescoiiiiiiiian. 21
DAPTO_ARG and non-standard types............ 17
DAPTO_RESULT and non-standard types........ 16
DAPTO_RESULT_INT............ccoiiiiiiii... 14
DAPTO_RESULT_INTVAL........ooiiinn... 15
DAPTO_RESULT_LONG............................ 14
DAPTO_RESULT_LONGVAL 15
DAPTO_RESULT_PTR...... ..., 14
DAPTO_RESULT_PTRVAL.......................... 15
DAPTO_RESULT_STR ...t 14
database 19
Definition table keys (DefTableKey) 10

DescribeCoord command......................... 7

23

E

editing files.................l 4
enterevent i, 11
enter event i 21
Environments (Environment) 10
@rTOr MESSAGES .. oo e e ite e aiiie e 7
event 10, 13
event counting..............l 11
event handlers............... 10
event parametersoiiiiiii... 10
event type i 13
examining attributes.............. 9
exiting Noosa........... ool 3

F

file format 21
finalisation............ ool 11
findt. .o 11
FONtS . e 4
Freqcommandcoiiiiiiiiinnnnnn. 11
frequency profile........................L. 11
FreqZero commandc.couuiiiunnnnnnn 11

H

Handlers commandcoovuunenn... 10
header files.........ciiiiiiiiiii i, 15

|

implementing monitoring interfaces......... 19
include files............ ... 15
init event type........ ... ol 11
initialisation................l 3, 11
input text display..........coiiiiiiiiiiii.. 7
invoking Noosa............... ..., 3

K

Kill commandc.vurvrmeneunenennennnnnnn 3

L

leave eventooiiiiii s 11
leave eventoovii i 21
lexical analysis..................iiiil 8
lexical structure i, 8

24

M

MESSAZES .\ oo e eeittt e i 7
11103« 3
mongdb. ... 3
monitoring database................... ... 19
monitoring interface......................... 13
monitoring interface implementation........ 19
monitoring non-standard types............... 15
monitoring support..............oiiiiiiiiia.. 20
mouse buttons............. ... il 3

N

n(aspects)t 20
n(events) ...t 20
n_dectoheX............o il 18
n_hextodec.........ciiiiii i 18
n_say in browsing support.................... 17
n_say inhandlers...............ooiiiiiiiian, 11
n_say_val ... i 18
n_send in browsing support................... 18
n_send to invoke operations.................. 11
non-standard types, browsing support....... 17
non-standard types, monitoring.............. 15
NOOS@ . ettt et et e 1
Noosa.fileHeight 4
Noosa.fileWidth................ 4
Noosa.handHeight 4
Noosa.inputHeight 4
Noosa.nodeColour.............................. 5
Noosa.transHeightt 4
Noosa.treeCompHeight.......................... 5
Noosa.treeCompWidth........................... 5
Noosa.treeFont 5
Noosa.treeFontSize...............oooiiiiii.. 5
Noosa.treeFullHeight.......................... 5
Noosa.treeFullWidth........................... 5
Noosa.treeHeight 5
Noosa.treeIncrHeight.......................... 5
Noosa.treeIncrWidth........................... 5
Noosa.treeSrcHeight........................... 5
Noosa.treeSrcWidth............................ 5
Noosa.treeWidth.................. 5
Noosa.valueColour...........coouuuiniiiinnnnnn.. 5
Noosa.width............... ..o 4

OIL types and typesets

(t0ilType, t0ilTypeSet)cvvvveuennn. 10
onlinehelp........... il 1
operation............ il 14
options 3

Execution Monitoring Reference

P

parameters...............iiiiiiiiiiiii 10
Parser generatorsoiiiiiieinnnn 8
parsing ... 8
PGS parser generating system.................. 8
Phrase command...................ccoiiiiiiiia.. 8
phrase structure................ ... i, 8
program argumentsoiiiiaaaa.. 3
programoptions.................l 3
PTG nodes (PTGNode)cooiu... 10
Q

quitting Noosa.......ooviiiiiiiiiiiii.. 3

R

re file .. o 3
reset timesot 11
=Y P o 14
return statements, 14
Run commandiiiiiiiiniiiaan., 3
running program................................ 3

S

saving handlers............................... 10
source text display 7
standard input............ ...l 7
startup file..............l 3, 17
stopping execution................. ... 10
String command................ 8
string table........ ... 8
Strings command.............. 8

TCOL o 11
tel files.. ..o 3, 17
time profile.....o 11
timing. 11
Token command................ ..., 8
tool command language.................o.uuin. 11
tracing events............ ... i 12
Tree nodes (Node, NODEPTR) 10
Tree parser nodes (TPNode) 10
Trees Menucoviiiininniiiiininn.. 9
type-dapto file format....................... 21

U

UNKNOWN VAlU€ovttt ettt ieaeennn 15
user initialisation........................... 3

VerifyLevel.........uuuuuuiiuiinnnnnn 4

Index

A%

window sizes

X

25

	1 Using Noosa
	Invoking Noosa
	Controlling Your Program
	User Initialisation
	Changing files from within Noosa
	X resources used by Noosa

	2 Information
	Input Text Display
	Messages
	String Table
	Lexical Structure
	Phrase Structure
	Trees and Attribute Values
	Breakpoints and events
	Frequency Profiles
	Time Profiles
	Tracing Events

	3 Implementation
	Monitoring Interfaces
	Aspects
	Event Types
	Operations
	Header Files
	Non-standard types
	Browsing non-standard types

	Implementing Monitoring Interfaces
	Monitoring Database
	Adding Monitoring Support To A Component
	Supporting Profiling
	Dapto Grammar

	Index

