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1 Introduction

This is a reference manual for LIDO, a language for the specification of computations in
trees. It is used to specify all computations of the analysis phase and the translation phase
of a language processor, which are to be executed on the abstract tree. The main purpose
of a LIDO specification is to describe which computations have to be executed in which tree
context, how those computations depend on each other, and which values are propagated
from one computation to another. The functions called in computations and the types of
propagated values are implemented in C; those implementations are not part of a LIDO
specification.

The LIGA system processes a LIDO specification and generates an evaluator in form of a
C module from it. LIGA automatically determines a tree walk strategy and the evaluation
order of computations on the base of the specified dependencies. Attribute grammars are
the formal model for this process.

This document is intended to provide precise definitions of LIDO constructs and of rules
of the language LIDO. For studying the use of LIDO in more complex and complete
translation specifications we recommend to read the explained example specifications in
$/Name/Examples/AlgLike.fw and in $/Type/Examples/Type.fw.

Other documents related to LIDO are:

• Section “top” in LIDO - Computation in Trees. Introduces and explains typical uses
of LIDO constructs.

• Section “top” in LIGA - Control Language. Describes how variants in LIGA’s process-
ing can be controlled.

• Section “top” in Show . Describes how to obtain debugging information for LIDO.

• Section “top” in GORTO - Graphical Order Tool. Describes how to trace dependencies
graphically.

• Section “top” in ModLib - Specification Module Library . Describes how to use pre-
coined solutions of common problems.
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2 Overall Structure

A LIDO text specifies an evaluator for executing computations driven by a tree walk.
A tree grammar specifies the structure of trees. Computations are associated with rules
and symbols of the tree grammar. Computations may depend on one another via typed
attributes.

In Eli a LIDO specification is usually composed of several components supplied by the user,
derived from libraries, or generated by Eli tools. The components are combined into one
file and then processed by LIGA.

Syntax

LIDOSpec ::= Specification

Specification ::= Specification Specification |

| RuleSpec ’;’ | SymComp ’;’

| SymSpec ’;’ | TermSpec ’;’

| AttrSpec ’;’ | ChainSpec ’;’

Examples

RULE p: Stmt ::= ’while’ Expr ’do’ Stmt COMPUTE

Expr.postType = boolType

END;

SYMBOL Expr COMPUTE

Compatible (THIS.preType, THIS.postType);

END;

ATTR preType, postType: DefTableKey;

There is no restriction on the order of specifications. Any permutation of specifications has
the same meaning.

LIDO objects such as rules, symbols, or attributes are identified by their names. They are
introduced by using them in LIDO constructs. There are no explicit declarations in LIDO.

Specifications associate certain properties with an object, e. g. computations are associated
with a rule, or a type with an attribute name. There may be several specifications for the
same object as long as the specified properties are not contradictory.

In the syntax of this document we distinguish names for objects of different kinds, e. g.
RuleName, SymbName, TypeName. The syntax rules for names are omitted in the rest of this
document. The following rules are assumed for XYZNames

XYZName ::= Identifier

XYZNames ::= XYZName | XYZNames ’,’ XYZNames

All names are written as identifiers in C.

Restrictions

It is strongly recommended not to use names that begin with an underscore or which have
the form rule_i where i is a number, in order to avoid interference with identifiers generated
by LIGA.
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RuleNames, SymbNames, and TypeNames must be mutually distinct. AttrNames must be
different from ChainNames.
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3 Rule Specifications

A rule specification specifies a production of the tree grammar, and may associate some
computations with the rule context. They are executed in every context which represents
that rule in a particular tree.

Syntax

RuleSpec ::= ’RULE’ [RuleName] ’:’ Production Computations ’END’

Example:

RULE p: Stmt ::= ’while’ Expr ’do’ Stmt COMPUTE

Expr.postType = boolType

END;

There may be several rule specifications that refer to the same rule. In that case the
associated computations are accumulated.

The set of productions of all rules forms the tree grammar. It must have exactly one root
symbol that does not occur on any right-hand side of a production.

Eli usually generates some rule specifications (without computations) from the concrete
grammar in order to complete the tree grammar.

In general the RuleName is omitted. The rule is then identified by the production. LIGA
generates a name of the form rule_i, with a unique number i for such a rule. A mean-
ingful RuleName should be specified for rules that are part of computed subtrees, since the
name of the tree construction function is derived from it (see Chapter 10 [Computed Sub-
trees], page 31). Also using the RuleFct feature may give rise to explicitly name rules (see
Chapter 12 [Predefined Entities], page 37).

Restrictions

Two unnamed rule specifications refer to the same rule if their productions are identical.

A named rule specification and an unnamed one refer to the same rule if their productions
are identical. In that case there must not be another rule specification with the same
production but a different name.

Two named rule specifications with the same RuleName must have the same production.

Note: Two rule specifications with different names, but equal productions, are only rea-
sonable if they belong to computed subtrees rather to subtrees constructed by a parser.

3.1 Productions

A production as part of a rule specification describes the structure of the rule context.
Computations associated with the rule may use or define attributes of nonterminal symbols
that occur in the production. The set of all productions in a LIDO specification defines the
tree grammar.
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Syntax

Production ::= SymbName ’::=’ Symbols

| SymbName ’LISTOF’ Elements

Symbols ::= Symbols Symbols |

| SymbName | Literal

Elements ::= Elements ’|’ Elements |

| SymbName

TermSpec ::= ’TERM’ SymbNames ’:’ TypeName

Examples

Stmt ::= ’while’ Expr ’do’ Stmt

DefIdent ::= Identifier

Declarations LISTOF ProcDecl | VarDecl

TERM Identifier: int;

Productions are composed of nonterminal symbols, named terminal symbols, and literal
terminals.

The SymbName on the left-hand side of a production is a nonterminal. A SymbName that does
not occur on the left-hand side of any production denotes a named terminal. A nonterminal
symbol that does not occur on the right-hand side of any production is the root of the tree
grammar.

We say the rule context is a lower context for the left-hand side nonterminal, and an upper
context for any right-hand side nonterminal.

Literal terminals are denoted by arbitrary non empty strings enclosed in single quotes. A
quote that is part of such string is denoted by two single quotes.

Literal terminals do not contribute to the trees specified by the tree grammar. They only
relate tree productions to concrete productions describing the input text, and distinguish
otherwise equal productions.

Named terminal symbols do not contribute to the trees specified by the tree grammar. They
are related to named terminal symbols of corresponding concrete productions describing the
input text. A value derived from such an input token may be used in computations which
are associated with the rule of the production or with the symbol on the left-hand side of
the production. (If the tree context is constructed by a computation, rather than by parsing
the input text, then that value is supplied as an argument to the call of the construction
function (see Section 10.1 [Tree Construction Functions], page 32).)

The type of the value provided by a named terminal symbol is specified by a TERM specifi-
cation. If there is no such specification the type int is assumed.

There are two forms of productions: plain productions and LISTOF productions.

A plain production defines tree contexts with a node for the left-hand side nonterminal
having a sequence of subtrees, one for each nonterminal on the right-hand side.

Computations may refer to any attribute of any nonterminal in the production. If one
nonterminal occurs more than once in the production references to the occurrences in com-
putations are distinguished by indices (starting from 1).
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A LISTOF production defines tree contexts with a node for the left-hand side nonterminal
having an arbitrary long sequence of subtrees each rooted by a nonterminal specified as a
LISTOF element. That sequence may be empty, even if there is no empty LISTOF element
specified.

Computations associated with the rule of a LISTOF production may only refer to attributes
of the left-hand side symbol. Attributes of the element subtrees are referenced only by
remote attribute access (see Chapter 9 [Remote Attribute Access], page 25).

Restrictions

There must be exactly one root nonterminal which does not occur on any right-hand side
of a tree grammar production.

If X is the left-hand side symbol of a LISTOF production, then there may not be a different
production (neither LISTOF nor plain) that also has X on its left-hand side.

Named terminals may not be LISTOF elements.

A literal terminal may not be the empty string.
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4 Symbol Specifications

A symbol specification associates computations with a symbol. They are executed for every
node which represents that symbol in a particular tree.

Symbols may be introduced which do not occur in the tree grammar. They are called CLASS

symbols and represent a computational role. Their computations may be inherited directly
or indirectly by grammar symbols. Symbols that do occur in the tree grammar are called
TREE symbols.

Syntax

SymComp ::= SymbKind SymbName [ Inheritance ] Computations ’END’

SymbKind ::= ’SYMBOL’ | ’CLASS’ ’SYMBOL’ | ’TREE’ ’SYMBOL’

Example:

TREE SYMBOL Expr COMPUTE

SYNT.coercion = coerce (THIS.preType, THIS.postType);

INH.IsValContext = true;

Compatible (THIS.preType, THIS.postType);

END;

A symbol specified TREE occurs in a tree grammar production, a symbol specified CLASS

does not. If neither is specified the symbol kind is determined by its occurrence in the tree
grammar. (Only the computations of CLASS symbols may be inherited by other symbols.)

The CLASS symbol ROOTCLASS is predefined. It is implicitly inherited by the root of the
tree grammar. Hence, any computation associated with ROOTCLASS is inherited by the root
context. This facility is to be used to specify computational roles for the root which are
grammar independent, and which need not be inherited explicitly.

Note: There may be TREE symbols that do not occur in the user supplied rules, but only in
those generated from the concrete grammar. In those cases it is recommended to explicitly
specify their kind to be TREE, in order to get more specific error reports in cases of accidental
mismatches.

Two sets of computations are associated with a symbol: the lower computations, which
are executed in every lower context of the symbol, i. e. in a context whose production
has the symbol on its left-hand side, and the upper computations, which are executed in
every upper context, i. e. in a context whose production has the symbol on its right-hand
side. The upper computations are executed once for each right-hand side occurrence of the
symbol.

Each symbol has two disjoint sets of attributes: synthesized (SYNT) attributes that are
defined by computations in lower contexts of the symbol, and inherited (INH) attributes
that are defined by computations in upper contexts of the symbol.

In a symbol computation only attributes of that symbol may be used or defined (except
the use of remote attributes). Those attributes are denoted SYNT.a if a is a synthesized
attribute, INH.b if b is an inherited attribute. An attribute of the symbol may also be
denoted THIS.c. In this case the attribute class must be specified in another occurrence of
that attribute.
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A computation that defines a synthesized (an inherited) attribute of the symbol belongs to
the set of lower (upper) computations. A plain computation defining no attribute belongs
to the set of lower computations (see Chapter 5 [Computations], page 11).

There may be several symbol specifications for one symbol. In that case the associated
computations are accumulated.

If both a symbol computation and a rule computation define the same attribute of that
symbol, the rule computation will be executed in that context, overriding the symbol com-
putation.

Plain computations can not be overridden.

Restrictions

The kind of a symbol, TREE or CLASS may not be specified contradictory.

CLASS SYMBOLs may not be used in productions.

TREE SYMBOLs may not be used in INHERITS clauses (see Chapter 8 [Inheritance of Compu-
tations], page 23).



11

5 Computations

Computations are associated with rules or with symbols. Each computation (that is not
overridden) is executed exactly once for every instance of its context in a particular tree. A
computation may yield a value denoted as an attribute which may be used by other compu-
tations. Computations may also be specified as depending on one another without passing
a value in order to specify dependences on side-effects of computations. (see Section 7.1
[Dependent Expressions], page 19).

Syntax

Computations ::= [ ’COMPUTE’ Computation ]

Computation ::= Computation Computation |

| Attribute ’=’ Expression Terminator

| Expression Terminator

| Attribute ’+=’ Expression Terminator

Terminator ::= ’;’

| ’BOTTOMUP’ ’;’

There are three forms of computations: attribute computations denoted as an assignment
to an attribute, plain computations that are simple expressions, and accumulating com-
putations which are a special variant of attribute computations, distinguished by the +=

token.

5.1 Attribute Computations and Plain Computations

The following example shows a sequence of two attribute computations and two plain com-

putations:

Examples

COMPUTE

Expr.postType = boolType;

Stmt[1].code = PTGWhile (Expr.code, Stmt[2].code);

printf ("while loop in line %d\n", LINE);

printf ("value = %d\n", Expr.val) BOTTOMUP;

END;

A computation is executed by evaluating its expression. It depends on every attribute that
occurs in the expression regardless whether the attribute is used for the evaluation. We
say those attributes are the preconditions of the computation. The attribute on the left-
hand side of an attribute computation represents the postcondition of that computation.
Plain computations do not establish a postcondition for any other computation. The eval-
uator is generated such that the computations are executed in an order that obeys these
dependencies for any tree of the tree grammar.

If both a symbol computation and a rule computation define the same attribute of a symbol,
the rule computation will be executed in that context, overriding the symbol computation.
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An expression may occur in value context, where it must yield a value, or it may occur
in VOID context, where it may or may not yield a value. If it does yield a value in VOID

context, the value is discarded. These terms will be used in sections below where further
constructs are introduced which contain expressions.

If the left-hand side attribute of an attribute computation has a type different from VOID

the right-hand side expression is in value context; the result of the expression evaluation is
assigned to the attribute. If the left-hand side attribute has the type VOID the right-hand
side expression is in VOID context. In this case the attribute simply states the postcondition
that the computation has been executed.

A plain computation is in VOID context, i. e. it may or may not yield a value.

Computations may be specified to be executed BOTTOMUP, that means while the input is
being read and the tree is being built. LIGA then tries to arrange the computations such
that those are executed already when their tree node is constructed. This facility is useful
for example if the generated language processor is to produce output while its input is
supplied (like desktop calculators), or if a computation is used to switch the input file.

Note: A BOTTOMUP computation may depend on other computations. These dependencies
should be specified the usual way. Such precondition computations should NOT be specified
BOTTOMUP unless they themselves are to be related to input processing. Without such
an over-specification LIGA can apply more sophisticated means to correctly schedule the
precondition computations automatically.

Note: Due to the parser’s lookahead, one token beyond the last token of the context of the
BOTTOMUP computation is read before before the computation is executed.

Restrictions

If the attribute in an attribute computation has a non-VOID type the evaluation of the
expression must yield a value of that type. This condition is not checked by LIGA. It is
checked by the compiler that compiles the generated evaluator.

Multiple symbol computations that define the same attribute are forbidden.

There must be exactly one attribute computation for each synthesized attribute of the left-
hand side nonterminal and for each inherited attribute of each nonterminal occurrence on
the right-hand side in the production of a rule context, or such a computation is inherited
in the rule context. (For accumulating computations a different rule applies.)

There may not be any cyclic dependencies between computations for any tree of the tree
grammar.

Contexts that may belong to subtrees which are built by computations (see Chapter 10
[Computed Subtrees], page 31) may not have computations that are marked BOTTOMUP or
contribute to BOTTOMUP computations.

LIGA may fail to allocate BOTTOMUP computations as required due to attribute dependencies
or due to LIGA’s evaluation strategy. In such cases messages are given.

5.2 Accumulating Computations

There are situations where a VOID attribute, say Program.AnalysisDone, represents a com-
putational state which is reached when several computations are executed, which conceptu-
ally belong to different sections of the LIDO text. Instead of moving all these computations
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to the only place where Program.AnalysisDone is computed, several accumulating compu-
tations may stay in their conceptual context and contribute dependences to that attribute.

A computation is marked to be accumulating by the += token. The following example
demonstrates the above mentioned use of accumulating computations:

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone += DoThis ( );

END;

....

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone += DoThat ( ) <- Statements.checked;

END;

Two accumulating computations contribute both to the attribute Program.AnalysisDone,
such that it represents the state when the calls DoThis ( ) and DoThat ( ) are executed
after the pre-condition Statements.checked has been reached. The two accumulating
computations above have the same effect as if there was a single computation, as in

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone = ORDER (DoThis ( ), DoThat ( ))

<- Statements.checked;

END;

The order in which DoThis ( ) and DoThat ( ) are executed is arbitrarily decided by the
Liga system.

Accumulating computations may be formulated in rule context or in the context of TREE or
CLASS symbols. Rule attributes may also be computed by accumulating computations.

Only VOID attributes may have accumulating computations. If an attribute has an accumu-
lating computation, it is called an accumulating attribute, and all its computations must
be accumulating. Attributes are not explicitly defined to be accumulating. If an attribute
is not defined explicitly, it has the type VOID by default. Hence, accumulating attributes
need not be defined explicitly, at all.

The set of accumulating computations of an attribute is combined into a single computation,
containing all dependences and function calls of the contributing accumulating computa-
tions, as shown above.

Accumulating computations may be inherited from CLASS symbols. In contrast to non-
accumulating computations, there is no hiding for accumulating computations: All accu-
mulating computations that lie on an inheritance path to an accumulating attribute in a rule
context are combined. For example, add the following specifications to the above example:

SYMBOL Program INHERITS AddOn COMPUTE

SYNT. AnalysisDone += AllWaysDo ( );

END;

CLASS SYMBOL AddOn COMPUTE

SYNT. AnalysisDone += AndAlsoDo ();

END;

Then all four computations for Program.AnalysisDone (two in the RULE context above,
one in the TREE symbol context Program, and one inherited from the CLASS symbol AddOn)
will be combined into one. It characterizes the state after execution of the four function
calls and the computation of Statements.checked.
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Restrictions

If an attribute has an accumulating computation, it is called an accumulating attribute,
and may not have or inherit non-accumulating computations.

An accumulating attribute must have type VOID.

Let X be the left-hand side nonterminal in a rule r and X.s an accumulating synthesized
attribute, then there must be at least one accumulating computation for X.s in r or inherited
there.

Let X[i] be an occurrence of the nonterminal X on the right-hand side of the rule r and
X.s an accumulating inherited attribute, then there must be at least one accumulating
computation for X[i].s in r or inherited there.

CHAIN computations and CHAIN attributes may not be accumulating.
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6 Attributes

Attributes are associated with symbols and with rules. They are defined and used in rule
computations and in symbol computations.

Each symbol has two disjoint sets of attributes: synthesized (SYNT) attributes that are
defined by computations in lower contexts of the symbol, and inherited (INH) attributes
that are defined by computations in upper contexts of the symbol.

Attributes are introduced by their occurrence in computations. They are not explicitly
declared. How types and classes of attributes are determined is described in Section 6.1
[Types and Classes of Attributes], page 16.

Syntax

Attribute ::= SymbolRef ’.’ AttrName

| RuleAttr

RuleAttr ::= ’.’ AttrName

SymbolRef ::= SymbName

| SymbName ’[’ Number ’]’

RhsAttrs ::= ’RHS’ ’.’ AttrName

Examples

RULE: Stmt ::= ’while’ Expr ’do’ Stmt COMPUTE ...

... Expr.postType ...

... Stmt[1].code ...

... .label ...

... RuleFct ("PTG", RHS.Ptg) ...

END;

SYMBOL Expr COMPUTE

... SYNT.preType ...

... INH.postType ...

... THIS.preType ...

... RuleFct ("PTG", RHS.Ptg) ...

END;

Attributes in rule computations have the form X.a or X[i].a where X is a nonterminal in
the production of the rule. They refer to the attribute a of the tree node corresponding
to X. The index distinguishes multiple occurrences of the nonterminal in the production,
counting from left to right starting at 1.

Rule attributes of the form .b may be used in rule computations, to simplify reuse of
computed values. They are defined and used within the computations of a single rule.
They are not associated with any symbol.

In symbol computations attributes of the considered symbol are denoted using SYNT, INH,
or THIS instead of the SymbName: SYNT.a for a synthesized attribute, INH.b for an inherited
attribute, or THIS.c leaving the attribute class to be specified elsewhere.

A RhsAttrs construct, such as RHS.a, is a shorthand for a sequence of attributes
all named a, one for each right-hand side nonterminal of the rule context associated
with the computation. If there is more than one such nonterminal the construct may
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only occur in function calls, where it contributes part of the argument sequence, or
in DependsClauses(see Section 7.1 [Dependent Expressions], page 19). If a symbol
computation contains a RhsAttrs its sequence of attributes is determined for each rule
context of the symbol individually. In combination with the predefined function RuleFct

a RhsAttrs construct may be used to specify a call pattern that is instantiated differently
for each rule context (see Chapter 12 [Predefined Entities], page 37).

Restrictions

The SymbolRef must occur in the production of the rule.

The SymbolRef must be indexed if and only if the symbol occurs more than once in the
production.

The index of a SymbolRef must identify an occurrence of the symbol in the production.

SymbNames and indices may not be used in attributes of symbol computations.

Rule attributes may not be used in symbol computations.

6.1 Types and Classes of Attributes

Each attribute has a certain type characterizing the values propagated by the attribute.
Attributes that describe only postconditions of computations without propagating a value
have the predefined type VOID. Non-VOID types must be specified explicitly.

Each attribute has either the class synthesized (SYNT), if it is computed in all lower contexts
of its symbol, or it has the class inherited (INH), if it is computed in all upper contexts
of its symbol. Attribute classes are usually derived from computations without explicit
specifications.

Syntax

AttrSpec ::= ’ATTR’ AttrNames ’:’ TypeName [ AttrClass ]

SymSpec ::= SymbKind SymbNames ’:’ [ AttrSpecs ]

AttrSpecs ::= AttrSpecs ’,’ AttrSpecs

| AttrNames ’:’ TypeName [ AttrClass ]

AttrClass ::= ’SYNT’ | ’INH’

Examples

ATTR code: PTGNode SYNT;

SYMBOL Expr, UseIdent: preType, postType: DefTableKey;

An attribute name specification (ATTR) determines the type and optionally the class of all
attributes having one of the AttrNames.

An AttrSpec for a nonterminal determines the type and optionally the class of attributes
given by the AttrNames for all nonterminals given by SymbNames. These specifications
override the type and the attribute class stated by ATTR specifications.

If the type of an attribute is left unspecified it is assumed to be VOID.
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Note: Misspelling of an attribute name in a computation leads to introduction of a VOID

attribute, and is usually indicated by messages on missing computations for that attribute
or illegal use of a VOID attribute.

Note: The type of a non-VOID rule attribute has to be specified by ATTR specifications.

Restrictions

There may be several ATTRspecifications for the same AttrName provided their properties
are not contradictory.

A specified attribute class must be consistent with all computations of that attribute.

VOID attributes may not be used in value contexts.

The type specified for an attribute must denote an assignable C type that is available
in the generated evaluator. LIGA does not check whether non-VOID attributes are used
consistently with respect to their types. Violations will be indicated when the generated
evaluator is compiled.
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7 Expressions

An expression is evaluated as part of a computation. The evaluation may yield a value,
cause an effect, or both.

7.1 Dependent Expressions

The evaluation of an expression depends on all attributes to which it refers. The expression
is evaluated only after all those attributes are evaluated.

Further attributes may be added as preconditions for expression evaluation without using
their values for computing the expression’s result. The additional attributes may describe
a computational state that has to be reached before the expression is evaluated. These
attributes are specified by a DependsClause.

Syntax

Expression ::= SimpExpr [ DependsClause ]

DependsClause ::= ’<-’ DepAttrList

DepAttrList ::= DepAttr

| ’(’ DepAttrs ’)’

DepAttrs ::= DepAttrs ’,’ DepAttrs

| DepAttr

DepAttr ::= Attribute | RemoteAccess | RhsAttrs

Examples

GetProp (UseId.Key,0) <- UseId.PropIsSet

printf ("%s ", Opr.String) <- (Expr[2].printed, Expr.[3].printed)

A DependsClause has a VOID context, i.e. its attributes may have any type; their values
are discarded.

7.2 Terminal Access

Named terminal symbols that occur in a production represent values that are usually ob-
tained from corresponding input tokens when the tree node is constructed. Those values
can be used in both rule and symbol computations.

Syntax

SimpExpr ::= SymbolRef

| ’TERM’ [ ’[’ Number ’]’ ]

Examples

RULE: DefIdent ::= Ident COMPUTE

DefIdent.Key = DefineIdn (DefIdent.Env, Ident);

END;

RULE: Point ::= ’(’ Numb Numb ’)’ COMPUTE

printf ("X = %d, Y = %d\n", Numb[1], Numb[2]);

END;
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SYMBOL Point COMPUTE

printf ("X = %d, Y = %d\n", TERM[1], TERM[2]);

END;

In rule computations the value of a terminal in the production is denoted by the SymbName,
which is indexed if and only if there are multiple occurrences of the SymbName in the pro-
duction.

Note: In a rule computation a non-indexed identifier that is not a name of a symbol in the
production of this rule denotes some entity of the generated C program, even if it coincides
with the name of a terminal that occurs in other productions.

In lower computations of a symbol X terminal values are accessed by TERM or TERM[i], where
TERM is equivalent to TERM[1]. TERM[i] denotes the i-th terminal in each production that
has X (or a symbol that inherits X) on its left-hand side, regardless of the terminal’s name.

Restrictions

TERM must not be used in rule computations or in upper symbol computations.

A terminal accessed in a symbol computation must exist in every production the computa-
tion is associated with.

7.3 Simple Expressions

Expressions are written as nested function calls where the basic operands are attributes, C
identifiers and C literals. The functions are either predefined in LIDO or their definitions
are supplied by the user in the form of C functions or macros outside the LIDO specification.
There is no operator notation for expressions in LIDO.

Syntax

SimpExpr ::= C_Name | C_Integer | C_Float | C_Char | C_String

| Attribute | RemoteAccess | RhsAttrs

| FunctionName ’(’ [ Arguments ] ’)’

Arguments ::= Arguments ’,’ Arguments

| Expression

Examples

printf ("Val = %d\n", Expr.val)

IF (LT (Expr.val, 0), 0, Expr.val)

Evaluation of a function call notation in LIDO has the same effect and result as the equiv-
alent notation in C.

There are some predefined FunctionNames that have a special meaning in LIDO (see
Chapter 12 [Predefined Entities], page 37).

Function calls need not yield a value if they are in a VOID context. All arguments of a
function call are in a value context.

C_Name, C_Integer, C_Float, C_Char, C_String are names and literals denoted as in C.
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Restrictions

Every FunctionName and C_Name must be predefined in LIDO or supplied by a user defini-
tion.

All arguments of non-predefined functions must yield a (non-VOID) value. For predefined
LIDO functions specific rules apply (see Chapter 12 [Predefined Entities], page 37).

Type consistency for non-VOID types is not checked by LIGA. Those checks are deferred to
the compilation of the generated evaluator.

A C_Name or a FunctionName should not begin with an underscore, in order to avoid conflicts
with LIGA generated identifiers.
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8 Inheritance of Computations

A set of related computations can be associated with a CLASS symbol describing a certain
computational role. It can be inherited by TREE symbols or by other CLASS symbols, thus
specifying that they play this role and reusing its computations. A symbol can play several
roles at the same time (multiple inheritance). Inherited computations can be overridden
by other computations of attributes having the same name. CLASS specifications have the
same notation and meaning as SYMBOL specifications.

Syntax

Specification ::= SymbKind SymbName [ Inheritance ]

Computations ’END’ ’;’

Inheritance ::= ’INHERITS’ SymbNames

Example:

CLASS SYMBOL RootSetLine COMPUTE

SYNT.GotLine = CONSTITUENTS KeySetLine.GotLine;

END;

CLASS SYMBOL KeySetLine COMPUTE

SYNT.GotLine = ResetLine (THIS.Key,LINE);

END;

CLASS SYMBOL KeyPrintLine COMPUTE

printf ("identifier in Line %d defined in line %d\n",

LINE, GetLine (THIS.Key,o))

<- INCLUDING RootSetLine.GotLine;

END;

SYMBOL VarDefId INHERITS KeySetLine END;

SYMBOL ProcDefID INHERITS KeySetLine END;

SYMBOL UseIdent INHERITS KeyPrintLine END;

SYMBOL Program INHERITS RootSetLine END;

CLASS computations obey the same rules as symbol computation.

The sets of lower and upper class computations may be accumulated from several CLASS
specifications for the same class.

CLASS computations may be inherited by TREE symbols or by other CLASS symbols.

A CLASS or a TREE symbol Target inherits the computations from a CLASS Source if there
is a Target INHERITS Source relation specified. The complete inheritance relation is accu-
mulated by all INHERITS specifications.

A computation is inherited only once even if there are several paths to it in the inheritance
relation.

A computation for an attribute a associated with a CLASS or a TREE symbol overrides any
computation for a inherited from a CLASS symbol.

Note: Plain computations can not be overridden.
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The computations inherited by a CLASS symbol belong to the computation sets of the CLASS
symbol and may be subject to further inheritance.

Restrictions

TREE symbols and CLASS symbols may not inherit from TREE symbols.

The inheritance relation must not be cyclic.

If C inherits from CLASS symbols C1 and C2, and if both C1 and C2 have computations for
an attribute a, it is undefined which one is inherited by C.
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9 Remote Attribute Access

Remote access constructs are used to relate computations that belong to distant contexts
in the tree, rather than those of adjacent contexts. The INCLUDING construct accesses
attributes of symbols that are further up in the tree (i. e. closer to the root). The
CONSTITUENT(S) construct accesses attributes of symbols that are further down in the tree
(i. e. closer to the leaves). The CHAIN construct relates computations in a left-to-right
depth-first order within subtrees.

These constructs may propagate values or simply specify dependencies between computa-
tions.

Remote access constructs are used to abstract from the particular tree structure between
related computations. Computational patterns can be specified independent of the partic-
ular grammar using remote access in combination with symbol computations and CLASS

symbols. Reusable specification modules are based on that technique.

9.1 INCLUDING

The INCLUDING-construct accesses an attribute of a symbol that is on the path towards the
tree root. Hence, several computations in a subtree may depend on an attribute at the
subtree root.

Syntax

RemoteAccess ::= ’INCLUDING’ RemAttrList

RemAttrList ::= RemAttr | ’(’ RemAttrs ’)’

RemAttrs ::= RemAttr ’,’ RemAttrs ’|’ RemAttr

RemAttr ::= SymbName ’.’ AttrName

Examples

INCLUDING Range.Env

INCLUDING (Block.Scope, Root.Env)

The RemAttrList specifies the set of attributes referred to by the INCLUDING construct,
called the referred set. On evaluation it accesses an attribute of the first symbol on the
path to the root which is in that set.

An INCLUDING in a rule computation accesses an attribute of a symbol above the current
context, even if the left-hand side symbol is in the RemAttrList.

An INCLUDING in a symbol computation accesses an attribute of a symbol above the current
one, even if the current one is in the RemAttrList.

An attribute of a CLASS symbol C.a in the RemAttrList contributes attributes X.a to the
referred set for all TREE symbols X by which C is inherited.

An INCLUDING in a VOID context does not cause a value to be propagated; it just states a
dependency.

Restrictions

The referred set may not be empty, unless the computation which contains it is not part of
or inherited by any rule context.
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The tree grammar must guarantee that in every tree there is at least one of the symbols of
the referred set above the context of the INCLUDING.

The referred set must not contain different attributes of the same symbol.

The types of the attributes in the referred set must be equal, unless INCLUDING is in a VOID

context.

9.2 CONSTITUENT(S)

The CONSTITUENTS-construct accesses attributes of symbols that are in the subtree of the
current context. Hence, it may depend on several computations in the subtree. If values
are to be propagated they are combined by user defined functions.

The CONSTITUENT-construct accesses a single attribute instance of a symbol that is in the
subtree of the current context.

Syntax

RemoteAccess ::= [ SymbolRef ] ’CONSTITUENT’

RemAttrList [ ShieldClause ]

| [ SymbolRef ] ’CONSTITUENTS’

RemAttrList [ ShieldClause ] [ WithClause ]

ShieldClause ::= ’SHIELD’ SymbNameList

SymbNameList ::= SymbName | ’(’ SymbNames ’)’ | ’(’ ’)’

WithClause ::= ’WITH’ ’(’ TypeName ’,’ CombFctName ’,’

SingleFctName ’,’ NullFctName ’)’

Examples

CONSTITUENT Declarator.type

Declarations CONSTITUENTS DefIdent.GotType

CONSTITUENTS Range.GotLocKeys SHIELD Range

CONSTITUENTS Stmt.code SHIELD Stmt

WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull)

The RemAttrList specifies the set of attributes referred to by the CONSTITUENT(S) con-
struct, called the referred set. On evaluation it accesses all instances of attributes of that set
which are in a certain range of the subtree of the current context. That range is determined
by its root node, which itself does not belong to the range, and by the set of shield symbols.
The tree nodes below a shield symbol are excluded from that range.

In a rule computation the root of the tree range is the node corresponding to the left-hand
side of the production. The optional SymbolRef may restrict the root of the tree range to
a node corresponding to a symbol of the right-hand side of the production.

In a (lower or upper) symbol computation the root of the tree range is the node correspond-
ing to that symbol.

If the optional ShieldClause is given it specifies the set of shielded symbols. If an empty
ShieldClause is given, no symbols are shielded from the tree range. If the ShieldClause

is omitted then the root symbol of the tree range (as described above) is shielded from the
range.

An attribute of a CLASS symbol C.a in the RemAttrList contributes attributes X.a to the
referred set for all TREE symbols X to which C is inherited.



Chapter 9: Remote Attribute Access 27

A CLASS symbol C in the ShieldClause contributes symbols X to the set of shielded symbols
for all TREE symbols X to which C is inherited.

A CONSTITUENT(S) in a VOID context simply states a dependency and does not cause a
value to be propagated.

For a CONSTITUENTS that is not in VOID context a WithClause specifies how the values of
the accessed attribute instances are combined into one value.

The given TypeName specifies the type of the result and of intermediate values.

The CombFctName specifies a function (or macro) that is applied to two values of the given
type and yields one value of that type.

The SingleFctName specifies a function (or macro) that is applied to each accessed attribute
instance and yields a value of the given type.

The NullFctName specifies a function (or macro) that has no argument and yields an inter-
mediate value. It is called for every node in the tree range that could have referred attribute
instances below it according to the tree grammar, but for the particular tree it has none.
Hence, the result of this function should be neutral with respect to the combine function.

It is guaranteed that the combine function is applied to intermediate values according to a
post-order projection of the accessed tree nodes. It is left open in which associative order
that function combines intermediate values.

The referred set of a CONSTITUENTS may be empty if no attributes of the RemAttrList are
reachable in the subtree or if CLASS symbols in the RemAttrList are not inherited to any
TREE symbol. In that case a VOID CONSTITUENTS is ignored, and a value CONSTITUENTS

results in a call of the NullFctName.

Restrictions

A SymbolRef must denote a right-hand side symbol of the production. It must not be
specified in symbol computations.

A CONSTITUENTS in a value context must have a WithClause.

For a CONSTITUENT the tree grammar must guarantee that the accessed attribute instance
is uniquely determined for every tree.

The RemAttrs must have the same type if the CONSTITUENT(S) is in value context.

9.3 CHAIN

Chains relate computations in left-to-right depth-first order within certain subtrees. A
chain may propagate values or just specify dependencies in that order. Only effective
computations, that compute a new chain value or a new post-condition need to be specified.
They are automatically linked in the described order.

The basic idea is captured by the following diagram representing the way of a chain through
the tree context of a rule graphically:

RULE: LhsSym ::= RhsSym1 RhsSym2 END;

| ^

v |

u LhsSym d
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/ ^

/ \

/ _____ \

/ | | \

v | v \

d RhsSym1 u d RhsSym2 u

| ^ | ^

| | | |

------------ --------------

The arcs represent the path of the chain through this context, coming in from the upper
context of LhsSym, going through the two subtrees, and leaving to the upper context. That
chain propagation is established automatically if the chain is not used in this context. Usu-
ally, some of the three arcs inside the the context may be specified by explicit computations
that use and define the chain at a certain symbol occurrence. The u and d in the graphic
stand for usable and definable chain accesses respectively.

Chain accesses are denoted like attribute accesses with a ChainName instead of an attribute
name.

Syntax

ChainSpec ::= ’CHAIN’ ChainNames ’:’ TypeName

Computation ::= ’CHAINSTART’ Attribute ’=’ Expression Terminator

Attribute ::= SymbolRef ’.’ ChainName

Examples

CHAIN cnt : int

RULE: Block ::= ’{’ Decls Stmts ’}’ COMPUTE

CHAINSTART Stmts.cnt = 0;

printf ("Block has %d statements\n", Stmts.cnt);

END;

RULE: Stmt ::= Var ’=’ Expr ’;’ COMPUTE

Stmt.cnt = ADD (Stmt.cnt, 1);

END;

CHAIN codeseq: PTGNode;

SYMBOL Block COMPUTE

CHAINSTART HEAD.codeseq = PTGNULL;

SYNT.transl = TAIL.codeseq;

END;

SYMBOL Stmt COMPUTE

THIS.codeseq = PTGSeq (THIS.codeseq, THIS.transl);

END;

A CHAIN specification introduces the name and the type of a chain. Any attribute notation
using a ChainName denotes a chain access.
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A chain states a precondition and a postcondition for each symbol node on the chain.
The precondition is set by the upper context of the symbol, the postcondition by its lower
context. They can be understood as an implicitly introduced pair of attributes, an inherited
one for the precondition and a synthesized one for the postcondition.

A computation is allocated on the chain if it depends on the chain and its result contributes
to the chain. Such computations are automatically linked in left-to-right depth-first order.
A computation is only linked in chain order if it defines the chain and depends directly
or indirectly on it. A computation that only accesses the chain without defining it is not
necessarily executed in chain order.

A computation that defines a chain without directly or indirectly accessing it breaks the
chain, i. e. the execution order of subsequent chain computations is independent of those
prior to this computation.

There may be several instances of a chain that have the same name and type. Each instance
is identified by a context that contains a CHAINSTART computation for that chain. Chain
references in subtrees of such a CHAINSTART context belong to that instance, unless they
belong to a nested instance of CHAINSTART context deeper in the tree. Different instances
of a chain are not related to each other, regardless of whether they are nested or separate.
However, they may be explicitly connected by computations. The structure of the tree
grammar must ensure that there is a CHAINSTART context above any computation that
refers to the chain.

A CHAINSTART computation defines the initial value of a chain. The chain is started at
the symbol specified as the destination of the CHAINSTART computation. It must be the
leftmost of the right-hand side symbols which the chain is to be passed through. HEAD.c

may be used for a chain c to denote the leftmost symbol of the right-hand side, in symbol
computations as well as in rule computations.

A computation may refer to a chain c by one of the following notations: X.c in rule
computations, THIS.c, SYNT.c, INH.c in symbol computations, HEAD.c, and TAIL.c in
both rule and symbol computations.

The notations X.c and THIS.c have different meanings depending on their occurrence in a
defining position of an attribute computation or in an applied position within an expression:

In rule computations the following holds: If X is the left-hand side symbol of the production,
then an applied occurrence X.c denotes the chain’s precondition at X; a defining occurrence
X.c denotes the chain’s postcondition at X. If X is a right-hand side symbol of the production,
then a defining occurrence X.c denotes the chain’s precondition at X; an applied occurrence
X.c denotes the chain’s postcondition at X.

In symbol contexts only lower computations may access or define a chain. An applied
occurrence of THIS.c denotes the chain’s precondition of that symbol; INH.c may be used
instead. A defining occurrence of THIS.c denotes the chain’s postcondition of that symbol;
SYNT.c may be used instead.

The notation HEAD.c can be used to define the chain’s precondition of the leftmost subtree.
The notation TAIL.c can be used to access the chain’s postcondition of the rightmost
subtree. These notations can be used in symbol computations and in rule computations. If
used in a rule computation that rule must have at least one subtree.
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If HEAD.c, TAIL.c, or CHAINSTART is used in a symbol computation that is inherited by a
rule which has no subtree, they have the same effect as if there was a subtree which passes
the chain dependency and the chain value, if any, unchanged.

In the following example a chain c is used in symbol computations. They state that the
functions Prefix and Suffix are called on the chain for every Expression context. The
Prefix call is applied to the incoming chain and specifies the chain precondition for the
leftmost subtree of Expression. The Suffix call is applied to the result of the rightmost
subtree and specifies the chain postcondition of this Expression:

SYMBOL Expression COMPUTE

HEAD.c = Prefix (THIS.c);

THIS.c = Suffix (TAIL.c);

END;

Restrictions

Every ChainName must be different from any attribute name and any AttrName.

The tree grammar must guarantee that each access of a chain is in a subtree of a CHAINSTART
context for that chain. Furthermore that subtree may not be to the left of the symbol where
the CHAINSTART initiates the chain.

None of THIS.c, SYNT.c, INH.c, TAIL.c may be used in upper symbol computations.

HEAD.c must not be used in applied positions.

TAIL.c must not be used in defining positions.

Chains can not be accessed in INCLUDING or CONSTITUENT(S) constructs.
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10 Computed Subtrees

In general the tree represents the abstract structure of the input text and is built by scanning
and parsing the input. That initial tree may be augmented by subtrees which result from
certain computations. This feature can be used for translation into target trees which also
contain computations that are executed in the usual way.

The tree construction functions generated by LIGA are used to build such subtrees. They
are inserted into the initial tree at certain positions specified in productions.

Syntax

Symbols ::= ’$’ SymbName

Examples

RULE: Block ::= ’{’ Decl Stmts ’}’ $ Target COMPUTE

Target.GENTREE =

MkTBlock (COORDREF, Dels.tcode, Stmt.tcode);

END;

RULE TBlock: Target ::= TSeq TSeq COMPUTE ... END;

Trees may be the result of computations using LIGA’s tree construction functions as de-
scribed below (see Section 10.1 [Tree Construction Functions], page 32).

Tree values may be propagated between computations using attributes of the predefined
type NODEPTR (see Chapter 12 [Predefined Entities], page 37).

Tree values are inserted into the tree in contexts where the right-hand side of the production
specifies insertion points of the form $ X where X is a nonterminal name.

The insertion is specified by a computation of the attribute X.GENTREE where X is the
insertion point symbol and GENTREE is a predefined attribute name for inherited attributes
of insertion symbols (see Chapter 12 [Predefined Entities], page 37). The computation must
yield a value of type NODEPTR that is a legal tree with respect to the tree grammar for X:
LIGA guarantees that the computations in the inserted tree are not executed before the
tree is inserted.

The tree grammar productions for computed trees may be disjoint from or may overlap
with the productions for the initial tree.

Computed trees may again have insertion points in their productions.

Restrictions

There must be exactly one insertion computation for each insertion point of a rule context.

There may not be an insertion computation for a symbol that is not an insertion point.

Inserted trees must be legal with respect to the tree grammar. This property is checked at
runtime of the evaluator.

No computation that establishes a precondition for a tree insertion may depended on a
computation within the inserted tree.

Contexts that may belong to subtrees which are built by computations may not have compu-
tations that are marked BOTTOMUP or contribute to BOTTOMUP computations (see Chapter 5
[Computations], page 11).
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10.1 Tree Construction Functions

LIGA generates a set of tree construction functions, one for each rule context. They may
be used in computations to build trees which are then inserted at insertion points. Their
names and signatures reflect the rule name and the right-hand side of the production.

For a rule

RULE pBlock: Block::= ’{’ Decls Stmts ’}’ END

there is a function

NODEPTR MkpBlock (POSITION *c, NODEPTR d1, NODEPTR d2)

The function name is the rule name prefixed by Mk. Hence, it is recommended not to omit
the rule name when its construction function is to be used.

LIGA’s tree construction functions are ready to be used in attribute computations. If they
are to be applied in user-supplied C-code an include directive

#include "treecon.h"

has to be used to make the function definitions available.

The first parameter of every function is a pointer to a source coordinate. That argument
may be obtained from the coordinate of the context where the function is called. It is used
for error reporting, see Chapter 12 [COORDREF], page 37.

The following parameters correspond to the sequence of non-literal symbols of the right-
hand side of the production. For each nonterminal in the production there is a parameter
of type NODEPTR. Its argument must be a pointer to the root node of a suitable subtree,
built by node construction functions. For each insertion point in the production there is
a parameter of type NODEPTR. Its argument should be NULLNODEPTR, since that subtree is
inserted later by a computation. For each named terminal in the production there is a
parameter of the type of the terminal. Its argument is the value that is to be passed to
terminal uses in computations.

Functions for chain productions, the right-hand side of which consists of exactly one non-
terminal, need not be called explicitly. The nodes for those contexts are inserted implicitly
when the upper context is built.

LISTOF productions have a specific set of tree construction functions: For a rule like

RULE pDecls: Decls LISTOF Var | Proc | END;

the functions

NODEPTR MkpDecls (POSITION *c, NODEPTR l)

NODEPTR Mk2pDecls (POSITION *c, NODEPTR ll, NODEPTR lr)

are provided, where Mk2pDecls constructs internal list context nodes and MkpDecls builds
the root context of the list.

The arguments for each of the parameters l, ll, and lr can be NULLNODEPTR representing an
empty list, a pointer to a list element node, a node that can be made a list element subtree
by implicit insertion of chain contexts, or the result of a Mk2-function call representing a
sublist.

The Mk2-functions concatenate two intermediate list representations into one retaining the
order of their elements.

Mk0-macros are generated. They take only the POSITION but no tree as argument, and
return NULLNODEPTR representing an empty list. These macros usually need not be used.
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The LISTOF subtree must be finally built by a call of the root context function.
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11 Iterations

The general principle of computations in trees guarantees that the computations specified
for each tree node context are executed exactly once. The iteration construct allows to
specify cyclic dependencies that may cause certain computations to be iterated until a
specified condition holds.

Syntax

Computation ::= Iteration Terminator

| Attribute ’=’ Iteration Terminator

Iteration ::= ’UNTIL’ Expression

’ITERATE’ Attribute ’=’ Expression

Example:

ATTR cnt, incr: int;

RULE: R ::= X COMPUTE

X.cnt = 1;

R.done = UNTIL GT (X.cnt, 10) ITERATE X.cnt = X.incr;

END;

RULE: X ::= SomeThing COMPUTE

X.incr = ORDER (printf ("%d\n", X.cnt), ADD (X.cnt, 1));

END;

The execution of an iteration establishes the postcondition specified by the UNTIL expression.

The attribute defined in the ITERATE-clause is the iteration attribute. The expression
of that definition usually depends cyclically on the iteration attribute itself. There has
to be another non cyclically dependent computation for the iteration attribute, which is
executed initially before the iteration. The iteration attribute may be a VOID attribute. All
computations that depend on the iteration attribute are executed at least once.

The ITERATE computation and all computations that depend on it are reexecuted if the
UNTIL condition does not hold.

Restrictions

The UNTIL condition must yield an int value being used as a conditional value.

There must be an initializing non-cyclic definition for the iteration attribute.

The cyclic dependencies involved in the iteration may not include computations of upper
contexts of the iteration context.

Some computations that do not lie on the iteration cycle may also be reexecuted on itera-
tion if not specified otherwise. This effect can be avoided by specifying the initial iteration
attribute computation to depend on them, or by specifying them to depend on the post-
condition of the iteration.

There may be several iterations for the same iteration attribute. The so specified iterations
may be arbitrary merged if not otherwise specified. In any case the UNTIL conditions hold
after completion of the iterations.

Termination of iterations has to be ensured by suitable UNTIL conditions and computations.

The iteration attribute may not be a chain attribute.
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12 Predefined Entities

The names described in this chapter have a predefined meaning in LIDO specifications.

The following types are predefined in LIDO:

VOID Attributes of this type describe a computational state without propagating
values between computations. Those attributes do not occur as data objects in
the generated evaluator.

int The terminal type.

NODEPTR Attributes of this type represent computed subtrees.

The predefined value NULLNODEPTR of type NODEPTR denotes no tree.

The CLASS symbol ROOTCLASS is predefined. It is implicitly inherited by the root of the tree
grammar (see Chapter 4 [Symbol Specifications], page 9).

The following attribute is predefined in LIDO:

GENTREE Every insertion point symbol has an attribute GENTREE of type NODEPTR.

The following functional notations have a specific meaning in LIDO. They are translated
into suitable C constructs rather than into function calls:

IF (a, b, c)

denotes a conditional expression. At runtime either b or c is evaluated, if a
yields a non-zero or a zero value. For determination of the static evaluation
order each of a, b, c contribute to the precondition of the computation that
contains the IF construct. If it occurs in value context b and c are in value
context, too. Then b and c have to yield values of the same type (not checked
by LIGA). Otherwise b and c are in VOID context and may or may not yield a
value of some type.

IF (a, b) is a conditional computation of b, which is executed only if a yields a non-zero
value. For determination of the static evaluation order both a and b contribute
to the precondition of the computation that contains the IF construct. This IF
construct must occur in VOID context. b is in VOID context, too.

ORDER (a, b, ..., x)

The arguments are evaluated in the specified order. If it occurs in VOID context
all arguments are in VOID context. If it occurs in value context it yields the result
of the last argument x. The others are in VOID context and may or may not yield
a value. For determination of the static evaluation order all arguments of the
ORDER construct contribute to the precondition of the computation containing
it. Any nesting of ORDER, IF, function calls, and other expressions is allowed,
as long as the stated conditions for VOID and value contexts hold.

RuleFct (C_String, arguments ...)

A call of this function is substituted by a call of a function whose name is
composed of the C_String and the name of the rule that has (or inherits) this
call. The remaining arguments are taken as arguments of the substituted call.
E.g. in a rule named rBlock a call RuleFct ("PTG", a, b) is substituted by
PTGrBlock (a, b).
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RhsFct (C_String, arguments ...)

A call of this function is substituted by a call of a function whose name is
composed of the C_String and and two numbers that indicate how many non-
terminals and terminals are on the right-hand side of the rule that has (or
inherits) this call. The remaining arguments are taken as arguments of the
substituted call. E.g. in a rule RULE: X ::= Id Y Id Z Id END;, where Y, Z

are nonterminals, and Id is a terminal, a call RhsFct ("PTGChoice", a, b) is
substituted by PTGChoice_2_3 (a, b). Usually, RhsFct will be used in symbol
computations, having arguments that are obtained by the RHS construct and
by a TermFct call.

TermFct (C_String, arguments ...)

A call of this function is substituted by a comma separated sequence of calls
of functions whose names are composed of the C_String and the name of the
non-literal terminals in the rule that has (or inherits) this call. The remaining
arguments are taken as arguments of the substituted calls. E.g. the following
symbol computation

SYMBOL X COMPUTE

SYNT.Ptg = f (TermFct ("ToPtg", TERM));

END;

RULE: X ::= Y Number Z Ident ’;’ END;

yields the following rule computation

RULE: X ::= Y Number Z Ident ’;’ COMPUTE

X.Ptg = f (ToPtgNumber (Number), ToPtgIdent (Ident));

END;

The order of the calls corresponds to the order of the terminals in the rule.
The TermFct call must occur on argument position if there is more than one
terminal in the rule.

The following names can be used in computations to obtain values that are specific for the
context in the abstract tree in which the computation occurs:

LINE the source line number of the tree context.

COL the source column number of the tree context.

COORDREF the address of the source coordinates of the tree context, to be used for example
in calls of the message routine of the error module or in calls of tree construction
functions.

RULENAME a string literal for the rule name of the tree context, to be used for example in
symbol computations.

Note: These names are translated by LIGA into specific constructs of the evaluator. Hence,
they can not be used with this meaning in macros that are expanded when the evaluator is
translated. (That was allowed in previous versions of LIGA.)

The following C macros are defined as described for the generated evaluator, and can be
used in the LIDO text:

APPLY (f, a, ... ) (*f) (a, ... ) a call of the function f
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with the remaining arguments

CAST(tp,ex) ( (tp) (ex) )

SELECT(str,fld) ( (str).fld )

PTRSELECT(str,fld) ( (str)->fld )

INDEX(arr,indx) ( (arr)[indx] )

ADD(lop,rop) ( lop + rop )

SUB(lop,rop) ( lop - rop )

MUL(lop,rop) ( lop * rop )

DIV(lop,rop) ( lop / rop )

MOD(lop,rop) ( lop % rop )

NEG(op) ( -op )

NOT(op) ( !op )

AND(lop,rop) ( lop && rop )

OR(lop,rop) ( lop || rop )

BITAND(lop,rop) ( lop & rop )

BITOR(lop,rop) ( lop | rop )

BITXOR(lop,rop) ( lop ^ rop )

GT(lop,rop) ( lop > rop )

LT(lop,rop) ( lop < rop )

EQ(lop,rop) ( lop == rop )

NE(lop,rop) ( lop != rop )

GE(lop,rop) ( lop >= rop )

LE(lop,rop) ( lop <= rop )

VOIDEN(a) ((void)a)

IDENTICAL(a) (a)

ZERO() 0

ONE() 1

ARGTOONE(x) 1

The last four macros are especially useful in WITH clauses of CONSTITUENTS constructs.
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13 Outdated Constructs

The following constructs are still supported to achieve compatibility with previous LIDO
versions. Their use is strongly discouraged.

13.1 Terminals

In previous versions of LIDO terminal symbols could have attributes, at most one synthe-
sized and several inherited. They were associated explicitly by specifications of the form

TERM Identifier: Sym: int;

Attributes of terminals could be used in attribute notations or CONSTITUENT(S) constructs:

Identifier.Sym

CONSTITUENT Identifier.Sym

If the above constructs occur in a specification a new nonterminal symbol that has the
specified attributes is introduced by LIGA, as well as a production that derives to the
terminal.

Terminal symbols could be element of a LISTOF production:

Idents LISTOF Identifier

This facility is NOT allowed anymore. It is indicated by an error message, and has to be
transformed explicitly.

13.2 Keywords

The key word DEPENDS_ON introducing a DependsClause is now abbreviated by the token
<-.

The key word NONTERM should be replaced by SYMBOL.

NONTERM Stmt: code: PTGNode;

NONTERM Stmt COMPUTE ... END;

13.3 Pragmas

The pragma notations are substituted by simpler notations:

Calling a function the name of which is composed from a string and the rule name, e.g.

LIGAPragma (RuleFct, "PTG", ...)

is now achieved by

RuleFct ("PTG", ...)

See see Chapter 12 [Predefined Entities], page 37.

A pattern for the sequence of right-hand side attributes, e.g

LIGAPragma (RhsAttrs, Ptg)

is now written

RHS.Ptg

Hence a combination of both features above, like

SYMBOL Reproduce COMPUTE
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SYNT.Ptg = LIGAPragma (RuleFct, "PTG", LIGAPragma (RhsAttrs, Ptg));

END;

is now written

SYMBOL Reproduce COMPUTE

SYNT.Ptg = RuleFct ("PTG", RHS.Ptg);

END:

See see Chapter 6 [Attributes], page 15.

Computations were specified to be executed while the input is being read and the tree is
being built using a pragma

LIGAPragma (BottomUp, printf("early output\n"));

Now the keyword BOTTOMUP is added to the computation:

printf("early output\n") BOTTOMUP;

See see Chapter 5 [Computations], page 11.
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14 Syntax

This section contains an overview over the LIDO Syntax. Outdated LIDO constructs de-
scribed in the previous chapter are left out in this grammar. For further explanations refer
to previous chapters.

LIDOSpec ::= Specification

Specification ::= Specification Specification |

| RuleSpec ’;’ | SymComp ’;’

| SymSpec ’;’ | TermSpec ’;’

| AttrSpec ’;’ | ChainSpec ’;’

RuleSpec ::= ’RULE’ [RuleName] ’:’ Production Computations ’END’

SymComp ::= SymbKind SymbName [ Inheritance ] Computations ’END’

TermSpec ::= ’TERM’ SymbNames ’:’ TypeName

SymSpec ::= SymbKind SymbNames ’:’ [ AttrSpecs ]

AttrSpec ::= ’ATTR’ AttrNames ’:’ TypeName [ AttrClass ]

ChainSpec ::= ’CHAIN’ ChainNames ’:’ TypeName

AttrSpecs ::= AttrSpecs ’,’ AttrSpecs

| AttrNames ’:’ TypeName [ AttrClass ]

SymbKind ::= ’SYMBOL’ | ’CLASS’ ’SYMBOL’ | ’TREE’ ’SYMBOL’

AttrClass ::= ’SYNT’ | ’INH’

Production ::= SymbName ’::=’ Symbols

| SymbName ’LISTOF’ Elements

Symbols ::= Symbols Symbols |

| SymbName | Literal | ’$’ SymbName

Elements ::= Elements ’|’ Elements |

| SymbName

Computations ::= [ ’COMPUTE’ Computation ]

Computation ::= Computation Computation |

| Expression Terminator

| Attribute ’=’ Expression Terminator

| ’CHAINSTART’ Attribute ’=’ Expression Terminator

| Iteration Terminator

| Attribute ’=’ Iteration Terminator

Terminator ::= ’;’

| ’BOTTOMUP’ ’;’

Iteration ::= ’UNTIL’ Expression

’ITERATE’ Attribute ’=’ Expression
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Attribute ::= SymbolRef ’.’ AttrName

| SymbolRef ’.’ ChainName

| RuleAttr

RuleAttr ::= ’.’ AttrName

SymbolRef ::= SymbName

| SymbName ’[’ Number ’]’

Expression ::= SimpExpr [ DependsClause ]

DependsClause ::= ’<-’ DepAttrList

DepAttrList ::= DepAttr

| ’(’ DepAttrs ’)’

DepAttrs ::= DepAttrs ’,’ DepAttrs

| DepAttr

DepAttr ::= Attribute | RemoteAccess | RhsAttrs

SimpExpr ::= C_Name | C_Integer | C_Float | C_Char | C_String

| Attribute | RemoteAccess

| RhsAttrs

| FunctionName ’(’ [ Arguments ] ’)’

| SymbolRef

| ’TERM’ [ ’[’ Number ’]’ ]

RhsAttrs ::= ’RHS’ ’.’ AttrName

Arguments ::= Arguments ’,’ Arguments

| Expression

Inheritance ::= ’INHERITS’ SymbNames

RemoteAccess ::= ’INCLUDING’ RemAttrList

| [ SymbolRef ] ’CONSTITUENT’

RemAttrList [ ShieldClause ]

| [ SymbolRef ] ’CONSTITUENTS’

RemAttrList [ ShieldClause ] [ WithClause ]

RemAttrList ::= RemAttr | ’(’ RemAttrs ’)’

RemAttrs ::= RemAttr ’,’ RemAttrs

RemAttrs ::= RemAttr

RemAttr ::= SymbName ’.’ AttrName

ShieldClause ::= ’SHIELD’ SymbNameList

SymbNameList ::= SymbName | ’(’ SymbNames ’)’ | ’(’ ’)’

WithClause ::= ’WITH’ ’(’ TypeName ’,’ CombFctName ’,’

SingleFctName ’,’ NullFctName ’)’



Chapter 14: Syntax 45

Literals in expressions (C_Name, C_Integer, C_Float, C_Char, C_String) are written as in
C.

Literals in productions (Literal) are written as strings in Pascal.

This syntax distinguishes names for objects of different kinds, e. g. RuleName, SymbName,
TypeName. The syntax rules for names are omitted. The following rules are assumed for
XYZNames:

XYZName ::= Identifier

XYZNames ::= XYZName | XYZNames ’,’ XYZNames

Identifiers are written as in C.

LIDO text may contain bracketed non nested comments in the style of C or Pascal

/* This is a comment */

(* This is a comment *)

or line comments like

% The rest of this line is a comment
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