GORTO

Graphical Dependency Analyzer

User Manual

V. Niepel
K.J. Prott
U. Kastens

University of Paderborn
D-4790 Paderborn
F.R.G

Table of Contents

1 Introduction..................... 1
2 Using GORTO within ELI...................... 3
3 Usage.....coo 5
3.1 The windows of GORTO 5
3.2 The Main WIndow. ... 6
3.3 Description of Symbols and Dependencies....................... 7
3.4 Productions ...t 8
3.5 SymbOIS. ..o 10
3.6 ViSit-SEqUeNCESottt ittt e 11
4 Layout Adaptation............................. 13
4.1 Resources of GORTO. i 13
4.2 Internal Interface Structure..............., 16
4.3 Graph Widget. ... 17

1 Introduction

This is a user manual for the tool GORTO. GORTO is a graphical tool for analysis and
modification of dependencies in attribute grammars. It is part of the LIGA system. The
graphical representation requires execution under the X-Window system. GORTO offers
the following support for attribute grammar development.

e Graphical representation and analysis of the dependency graphs for productions and
symbols.
e Graphical representation and modification of partitions.

e Graphical representation and modification of visit-sequences.

GORTO has a graphical user interface in which the mentioned information is represented.
Interactive modification by the user are possible. The layout of the presentation can be
influenced by the user.

After a short description of the user interface, we first describe the usage of the tool. the
description is related to the standard configuration. Afterwards we discuss the possibilities
of modifying the user interface for individual partiality.

2 Using GORTO within ELI

It is recommended to use GORTO in order to trace cyclic attribute dependencies which
are indicated by the ORDER pass of LIGA (message "CYCLE IN INDUCED GRAPHS").
Also in the case that ORDER fails to compute an evaluation order (message "CYCLE IN
PARTITIONED GRAPHS") GORTO can be used to analyze the reason and to arrange the
dependencies differently. The results of such modifications are described by ARRANGE
options and made available in a file GORTO.ctl. GORTO may be called for a correct
attribute grammar as well, in order to study the dependencies. If the attribute grammar is
incomplete, GORTO does not produce any information additional to that given by ORDER.

GORTO is started by the following derivation

<file>.specs:gorto

After completion of the interactive GORTO session, the results (if any) are stored in the
file GORTO.ctl in the current working directory of the user. If there already exists a file
with that name, it is saved with the name GORTO.bak. If GORTO.ctl is not yet part of
the specifications, its name should be added in a .specs file in order to use the results of

the GORTO session. Eli recognizes if GORTO.ctl has been modified by a GORTO session,
and restarts the necessary derivation steps. GORTO itself can be restarted even if no
specification has been modified. .ctl options for ORDER are recognized by GORTO too.
They are passed on into GORTO.ctl.

An interactive GORTO session requires that Eli is started under X-Windows (X11). The
environment variable DISPLAY must be set.

3 Usage

3.1 The windows of GORTO

Graphical Order Tool
Main Menu | Displaying visit sequences
Topological Slralegy| Rules Changed i
AExpr_1 AExpr_2 AExpr_3 AddOp_1
AddOp_3 Assign_1 Assign_2 Block RULE Iteration®hile:
ConditionExpr Const_1 Const_2 Decl wIteration ::= "while’ xCondition 'do’ =Stmts ’end’
Decl_2 Decl_3 ElsePart ExprBlock STATIC . ., L. .
Expr_1 Expr_2 Expr_3 Factor_1 2 xIteration.type:=(sYoid CONDITION (xConstlon.type=th‘:rnd|tlon.type)
F 3 F. 4 1 ronWhile MulOp_ 1 2 AND (xStmt. type=xStmt. type));
actor_: actor_ terationWhile MulOp_| s wIteration. type: =FirstType(sVoid, =Condition.type, =Stmts.type);
MulOp_3 MulOp_4 Name NoElsePart CONDITION ASSERT (BLEICH(xCondition. type, sBoolean), ,
RelOp_1 RelOp_2 RelOp_3 StmtExpr Condition of an iteration must yield Boolean’);
Stmt_1 Stmt_2 Stmt_3 Term_1 Tterati | c label O
wIteration. loop:=Cnewlabel ();
Term_3 Typelnteger UnaOp_1 Una0p_2 xIterati0n.test:=[!new|abe(| Qs q "
. i wIteration. repr:=Cnorepr (Ctest (Rtru, xIteration. loop, xCondition.repr));
Partition Strategyl ymbols @ Condition, prey: = i Cvoid{(xStmts. repr));
ConstOpt xAddOp % Rule IterationWhile p(xIteration. test, xIteration. prev))
xBlock xClause bs Visit—Sequence Visit-Sequence IterationWhile
xDeclsOpt xElsePart xE
xIdentifier xInteger X pe xCondition[1].incl0
xCondition
xProgram xPR.elOp P - xCondition[1].incll
xTerm xTermOpt X incl0 | 1.Visit xCondition{1]
xIteration m:;p “heck Condition ASSERT
e
o incll xStmts[2].incl0
S 1 xTteratio]
ymbol xlteration Bl prey) *Stmts[2].incll
Partitioned P— repr [1.visit xStmisi2]
N prev xlteration{0].type
xStmis
xIteration Toop i 1.Loave
rt:p:" incll xIteration[0].loop
s type xIteration[0].test
prev xStmis{2] prev
repr [2.isit xStmsi2] _|-—>
xCondition{1].prev
[2.Visit xCondition{1]
I xlteration{0].repr

2.Leave

Figure 1: The Graphical User Interface

The user interface of GORTO is composed of several distinct windows, which can be
manipulated in the same manner as any other window. A view over the different windows
is given in Figure 1. (While reading this documentation we suggest to call GORTO under
ELI to practice what is described in the following.) The following types of windows are

offered:

Main window

The main window of GORTO is divided in several parts and includes the possi-
bility of activating several menus and opening symbol and production windows.
The actual status of the tool is announced in the main window.

Symbols

Each Symbol-window contains the dependency graphs for one symbol.

The

dependencies between attributes are described by arrows and the partitions are
implicitly described by the graphical layout arrangement of the attributes

Productions

Production windows contain the dependency graph for one production each.
The dependencies between attributes are also described by arrows.

6 GORTO - Graphical Order Tool

Visit-Sequences
Visit-Sequence windows include the visit-sequence for one production each. In
one visit-sequence the lifetime of those attribute instances are described which
appear defining in the corresponding production.

LIDO-Source text The source text in LIDO for this AG.

3.2 The Main Window

The main window is horizontally divided in several parts and allows mainly the opening
of production and symbol windows. Furthermore different menus can be activated in the
main window.

Main Menu and Status Display

The upper part of the main window contains the main menu and an overall status
indication. Depending on the situation the status indication informs either about the actual
state of a running dependency analysis or about the success of the last dependency analysis.
The main menu allows the following operations:

‘Lido window’ Opening and closing source text windows.
‘Close all windows’ Close all opened windows.
‘New computation’ Start a new dependency analysis.
‘Hide attribute’ Hiding attributes.
‘Unhide attribute’ Show hidden attributes.
‘Show Partitioned Dependencies’ Show partitioned dependencies.
‘Leave GORTOQ’ Leaving GORTO.
Selection of Productions and Symbols

Another part of the main window allows the selection of productions and symbols. Gorto
indicates two lists of the names of productions and of symbols. The selection of a name by
pressing the mouse-button opens the according window. The amount of listed productions
and symbols can be influenced with the switchboard arranged above. The switches have
the following significance:

Cyclic Productions or symbols with cyclic dependency graphs.
Arranged Productions or symbols with dependencies added manually.
Changed Productions and symbols changed after the last computation.
Visit-Sequence

Productions a visit sequence has been computed for.

Partitioned
Symbols for which a partition has been computed

The total list of productions and symbols is determined as a union of all groups activated
with the switches.
Strategy Menus

For computation of visit-sequences and partitions Order offers different strategies, which
can be activated with the according menu in the main window. Therefore two menus exist:

Topological Strategy
Strategy to compute visit sequences.

Chapter 3: Usage 7

Partition Strategy
Strategy to compute partitions.

The menu-points allow the selection of a specific strategy. After selecting such a menu-
point GORTO starts automatically a new dependency analysis.

Hiding of attributes

It is possible to hide several attributes in the representation of production graphs via
the main menu. Hidden attributes are not visable any more in the production graphs to
save space on the screen and get a better overview. They still are considered in all internal
computations.

After selection of the menu point 'Hide attribute’ a dialog window appears, in which
the desired attribute name has to be entered. Regular terms can be used in the defining
form of regexp(3). The input can be confirmed with 'Confirm’ or canceled with ’Cancel’.
When confirming all selected attributes are hidden no matter to which symbol they belong.
Additionally with the commands ’Including, Constituent’ and ’Chain’ it is possible to hide
the attributes generated by LIGA when expanding the corresponding LIDO notations.

With the menu point 'Unhide attribute’ attributes can be reinserted with the same
regulations. The structure of the dialog window to insert attributes is the same as it is for
hiding attributes.

3.3 Description of Symbols and Dependencies
First the general concepts of descriptions of symbols and dependencies shall be explained.
Description of symbols

Symbols are described by their names and their attributes. The attributes are arranged
under the symbol name and sorted in the sequence of the computed partitions. Additionally
the synthesized attributes are moved right with respect to the inherited attributes, so that
the layout of all attributes implicitly describe the computed partition.

If in case of cyclic dependencies no partitions can be computed, the sequence of the
description of course does not represent a partition. In this case the inherited attributes
are located before the synthesized attributes.

Description of dependencies

Dependencies are described by an arrow, which is located between both involved at-
tributes pointing the dependent attribute. To mark different origins of dependencies the
following different lines are used:

straight line
direct dependency

dashed line
caused by induction of dependencies

doted line caused by partitioning

8 GORTO - Graphical Order Tool

3.4 Productions

A production window shows the dependency graph for a production as well as the infor-
mation concerning the status of the production. The described dependencies can be traced
interactively.

Status indication

The upper part of the production window contains information about the actual status
of this production. Every single entry has the same meaning as the corresponding button
in the main window.

Layout of symbols and dependencies

Additionally to the different types of lines described above the different types of depen-
dencies are furthermore distinguished by their graphical location. The dependency arrows
are located either outside at a single symbol or inside between the symbols. The meaning
of this layout is as follows:

Outside Dependencies which originate from another context

Inside Dependencies which originate from this production

Chapter 3: Usage 9

Tracing Dependencies

Rule IterationWhile

Visit-Sequence

xCondition

incl0
xi teratio/ '

incll

incll

iype

-Sequence

xStmi

incll

incll
repr_in: YalueDescript | we L‘—}

prev

N

RULE Stmt_1:
»3tmts ! i= xStmt xStmtsOpt
STATIC .
TRANSFER type WITH xStmtsOpt; xStmisOpt
xotmtsOpt. type in = xStmt. type; .

repr

incld

TRANSFER repr WITH xStmtsOpt;
»StmtsOpt. repr_in 1= xStmt. repr;

TRANSFER prev WITH =xStmt, =StmtsOp

H

RULE Stmt_2:
wStmtsOpt ::= 737 «Stmts
STATIC

Figure 2: Tracing Dependencies

The origin of the shown dependencies can be traced interactively by selecting an arrow
with the mouse-button. The origin of this dependency is shown as a directed path or it
is shown directly in the source-text. In case of the directed path a new window will be
opened in which the dependencies are marked on their path with thick lines. The selected
dependency is then marked thick and dashed. Both ways of indication are described in
Figure 2. There are three variants of starting a dependency trace which are described in
the following with the corresponding mouse-buttons in brackets:

FOLLOW <Shift-Buttonl>
The selected dependency is traced without consideration of dependencies which
might be marked.

FOLLOW-MARKED (Button 1)
If the dependency had been marked by a previous trace, the selected dependency
will be traced now. The trace of non-marked dependencies is therefore omitted.

10 GORTO - Graphical Order Tool

FOLLOW-AND-CLOSE (Ctrl-Button 1)
The selected dependency will be traced in any case as with the variant FOL-
LOW. Additionally all windows are automatically closed which are not involved
in this trace.

The Production Menu

The production menu can be activated by pressing Button3 and allows the following
operations:

Close this production
Close this production window

Close all productions
Close all production windows

Follow all marks
Automatic tracing of marked dependencies

Show visit-sequence
Open the corresponding visit sequence window

3.5 Symbols

A symbol-window shows the dependency graph of a symbol together with the affiliated sta-
tus information. The shown dependency graphs can be traced and the computed partition
of the symbol can be modified.

Status Notification

The upper part of a symbol-window contains information about the actual status of
the symbol. The entries have the same meaning as the corresponding buttons in the main
window.

Trace of Dependencies

The dependencies can be trace in symbol-windows in the same way as in production-
windows. Again there are the three variants FOLLOW, FOLLOW-MARKED and
FOLLOW-AND-CLOSE, which show the derivation of the selected dependencies as a
directed path and open a new window, if necessary.

Modification of Partitions

GORTO divides the attributes of a symbol into two different classes: critical and non-
critical attributes. Critical attributes are those attributes, which can’t be moved to another
partition without increasing the total number of partitions. Non-critical attributes can be
moved, up to a certain extend, within the actual partitioning. The critical attributes are
displayed in bold and italic, the non-critical attributes described in a normal font. GORTO
offers three possibilities to modify a partition:

Moving of a non-critical attribute
First a non-critical attribute has to be selected with the mouse-button. This
attribute can be moved by selecting another partition of attributes of the same
class with button2. The attribute is then automatically fixed to the desired
partition by insert onof two dependencies to critical attributes in the adjacent
partitions.

Chapter 3: Usage 11

Adding a new partition

Before or after the actual partitions a new partition can be added which contains
a selected attribute. Again the attribute has to be selected with the mouse
button. Afterwards the new partition can be added before or after all of the
the existing partitions by selecting an attribute of the first or the last partition
with the Shift-Button2. The selected attribute will be used to produce a new
dependency, which forces the computation of a new partition with the attribute
selected first.

Segmentation of existing partitions

An existing partition can be segmented into several partitions by ‘squeezing’
an attribute of another partition between the two attributes of the the original
partition. To do that, click on the attribute which has to be ‘squeezed’ in.
Within the partition which shall be segmented both surrounding attributes have
to be selected. Both attributes are selected one by one by pressing the Ctrl-
Button2, first the attribute which shall proceed, then the attribute which follows
the new partition. If the respective partition contains only two attributes, then
it is not necessary to select the second one. GORTO identifies it automatically.

A modification of the partition doesn’t lead automatically to a completely new compu-
tation of all dependency graphs. The changes will be made only locally within the effected
graphs. A completely new computation must be started manually using the main menu.

The Symbol Menu

The symbol-menu can be activated by pressing the Button3 and allows the following

operations:

Close this symbol

Close the symbol window

CLose all symbols

CLose all symbol windows

Remove arranged dependencies

Remove all the added dependencies

Force partition

Freeze the partition

Select production

Select production

Show last BunNF use

3.6 Visit-sequences

A visit-sequence window can be activated by an operation of the production menu. shows
the visit-sequences of a production together with the lifetimes of the attribute instances
within this production. The visit-sequence can be modified within the frame of the certain

restrictions.

12 GORTO - Graphical Order Tool

Description visit-sequences

A visit-sequence will be described by a sequence of operations which are located one
below the other. The operations are described by a short text which contains several
informations depending on the type of the operation. In case of more than one leave from
root-symbol of the production each single visit is separated and terminated with a leave-
operation.

The lifetime of all attribute instances which are computed in the described visit-sequence
is shown in form of a dependency. This dependency starts with the computation and ends
with the last use of the attribute value.

Modification of visit-sequences

As mentioned earlier the described visit-sequence can be modified within the frame of
the remaining freedom. When selecting an operation by pressing the mouse-button, the
area in which this operation can be moved without any conflicts is shown. The operation
can be moved by pressing Button2 at the new position (similar to moving in partitions).
Operations which can’t be moved are printed in bold and italic, like the critical attributes
in dependency graphs.

The Visit-sequence Menu

The visit-sequence-menu can be activated by pressing Button3 and allows the following
operations:

Close this visit-sequence

Close all visit sequences

Don’t show last attribute use
Fix position of this element
Remove arranged dependencies

13

4 Layout Adaptation

The following describes the possibilities of adaptation of GORTO to personal preferennces.
The adaptation of GORTO is done by the resource mechanism of the X-Window-System,
which can’t be explained in detail here. In this paper only specific details of the imple-
mentation of GORTO is considered. For common explanations of resources see the original
literature.

4.1 Resources of GORTO

GORTO uses several resources which are not related to any special widget. They rather
have the status of globally used resources and are specified in the form of Gorto.Name.
These are the following resources:

Common adjustments

Name Class Default Meaning

sortProdList SortList False sorting production lists

sortSymbolList SortList False sorting symbol lists

leftSymbol LeftSymbol False imaging symbol graphs

showPartDeps ShowPartDeps False showing partitioned dependencies

makeTitleBars MakeTitleBars False producing titelspaces

wmPushDown WmPushDown 0 Pushdown of Window Manager
Filenames

Name Class Meaning

lidoFile LidoFile LIDO-Input-File

inputFile InputFile exp_idl-Input-File

outputFile OutputFile ord_idl-Output-File
lclFile LCLFile LCL-Output-File

14

Layout of dependency graphs

GORTO - Graphical Order Tool

Name Class Default Meaning

boldFont Font fixed font for symbol names

attributeFont Font fixed font for non-critical attributes

criticalFont Font fixed font for critical attributes

textPadding Padding 2 free pixel around strings

synthesizedIndent Indent 15 indentation of synthesized attributes

symbolvPadding Padding 10 vertical space between symbols

symbolhPadding Padding 5 horizontal space between symbols

arrowWidth ArrowWidth 3 width of arrows

arrowHeight ArrowHeight 9 hight of arrows

arrowLength ArrowLength 30 minimal length of arrows

depColumnWidth DepColumnWidth 3 width of column of dependencies

depFaselLength DepFaselength 5 length of bends in dependencies

selectWidth SelectWidth 3 selection width of dependencies
Colours

Name Used for

directDepColor direct dependencies

inducedDepColor induced dependencies

arrangedDepColor added dependencies

arrangedInducedDepColor induced added dependencies

partitionedDepColor partitioned dependencies

inducedPartitionedDepColor
attrColor

induced partitioned dependencies
attributes

includingAttrColor attributes produced by INCLUDING
constituentAttrColor attributes produced by CONSTITUENT(S)
chainAttrColor attribute produced by CHAIN
symbolColor symbol names

visitColor VISIT-Operations

conditionColor CONDITION-Operations

lineColor frame resp. cutlines

Chapter 4: Layout Adaptation

Strings

Name

emptyListString
directRuleState
directSymbolState
optionState
transitiveState
inducedState
arrangeOptionState
arrangedState
partitionState
partitionedState
visitSeqState
lifetimeState
infoState
hideState
unhideState
directDisplay
transitiveDisplay
inducedDisplay
arrangedDisplay
partDisplay
visitSeqDisplay
constructIDLState
ouputState
noRecomputeString
ruleString
symbolString
transferString
includingString
constituentString
chainString
unknownDepString
cyclicString
arrangedString
changedString
partitionedString
visitSeqString
forcedString
cycleMessage
noBmNFMessage

Default

(empty)

direct rules

direct symbols
order options
transitive graphs
induced graphs
arrange option
arranged graphs
partitions
partitioned graphs
visit sequences
lifetimes

display information
hide attribute
unhide attribute
direct display
transitive display
induced display
arranged display
partition display
visit sequence display
idl structure
output files

not necessary

rule

symbol

transfer dependency
including dependency
constituent dependency
chain dependency
unknown dependency
cyclic

arranged

changed

partitioned
visit-sequence
forced

would yield cycle
no BmNF occurrence

15

16 GORTO - Graphical Order Tool

4.2 Internal Interface Structure

To allow sensible specification of resources the following internal interface structure of
GORTO is given. The widgets used by GORTO are Athena widgets of the X Version
11, Release 4. The main window of GORTO shows the following widget structure:

Gorto
(TopLevelShell)

paned
hPaned rules prodListView symbols symbolListView
(Paned) (PNF{)\ (Paned) v iewpon\
mainMenuButton state topologicalMenuButton rules prodList partitionMenuButton symbols symbolList
(MenuButton) (Label) (MenuButton) Form) (List) (MenuButton) (Form) (List)

rules cyclic arranged changed visitSeq symbols cyclic aranged changed partitioned
(Label) (Toggle) (Toggle) (Toggle) (Toggle) (Label) (Toggle) (Toggle) (Toggle) (Toggle)

Structure of Rule- and Symbol windows:

rule symbol
(TopLevelShell) (TopLevelShell)

rulePaned vpaned
(Paned) (Paned)
state ruleView state symbolView
(Label) (Viewport) (Label) v rewron)
ruleGraph symbolGraph
(Graph) (Graph)

Structure of the window to select the according rules in symbol windows:

symbolRules
(TransientShell)

paned
(Paped)

label cancel rules
(Label) (Command) (List)

Structure of the dialogue window to hide attributes:

Chapter 4: Layout Adaptation 17

hide/unhide
(TransientShell)

paned
(Paned)
label selectBox genBox
(Label) (Form) ?m)\
name confirm cancel including constituent chain
(AsciiText) (Command) (Command) (Command) (Command) (Command)

Structure of visit-sequences, Lido-source-text and announcements:

visitSeq Message
(TopLevelShell) (TransientShell)
visitSeqView lido msg
(Viewport) (TopLevelShell) (Dialog)
visitSeqGraph lidoText Ok
(Graph) (AsciiText) (Command)

4.3 Graph Widget

The graph widget is a widget adapted to GORTO. It is used to describe different dependency
graphs. It uses the widget class Core and doesn’t provide new resources for the adaptation
of the graph widget. The adaptation of graph widgets is done by certain actions at certain
events. This binding up is done with the so called binding translations. For their description
see the original literature.

Two actions are available: menu-popup() and select(). The action menu-popup() is
used to call the menus within the dependency graphs and expects the internal name of a
menu as a parameter. The action select() is used for adaptation of mouse and keyboard
handling within dependency graphs. It accepts the following parameters which stand for
user-commands described above:

Name Objects possible contexts

FOLLOW dependencies symbol, rules

FOLLOW-AND-CLOSE dependencies symbol, rules

FOLLOW-MARKED dependencies symbol, rules

REMOVE added dependencies symbol, rules

HIDE attributes symbols, rules, visit-sequences
UNHIDE attribute symbols, visit-sequences

MOVE attribute symbols, visit-sequences
SPLIT-PARTITION attributes symbols

APPEND-PARTITION attributes symbols

The action select() is normally bound to the use of the mouse. Up to three parameters
can be called to state the action to be executed depending to the selected object. If more
than one parameter is given for the same object, only the last action will be executed the
others are ignored. The default paramters for the graph-widget is the following:

18

<Btn3Down>: menu-popup(mainMenu) \n\
<BtnDown>: select(FOLLOW) \n

GORTO - Graphical Order Tool

Index

C

critical attributes.............., 10
CYCLE IN INDUCED GRAPHS 3
CYCLE IN PARTITIONED GRAPHS................... 3

D

DISPLAY ... 3

G

GORTO.bak ... 3
GORTO.ctl ... e 3

H

Hiding of attributes.......................... 7

M

Main Menu.oouiiiiniie it 6
Main Windowciviinniinii i 6
Modification of Partitions 10

Modification visit-sequences................ 12

19

P

Production Menu.............c.oiiiiiiiiii.. 10

S

Status Display..........cooiiiiiiiiiiiit 6
StrategyMenus.................... ... 6
Symbol Menuoiiiiiiiiii 11

T

Trace of Dependencies...............couuunn. 10
Tracing Dependencies.......................... 9

v

visit-sequenceiiiiiiiiiia... 11
Visit-sequence Menu.......................... 12

X

X-Windows ... iii i 3

	1 Introduction
	2 Using GORTO within ELI
	3 Usage
	The windows of GORTO
	The Main Window
	Description of Symbols and Dependencies
	Productions
	Symbols
	Visit-sequences

	4 Layout Adaptation
	Resources of GORTO
	Internal Interface Structure
	Graph Widget

	Index

