
Definition Table

Compiler Tools Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO, USA

80309-0425

i

Table of Contents

1 The Definition Table Module 3
1.1 How to create and use definition table keys . 3
1.2 How to declare properties . 3
1.3 Behavior of the basic query operations . 4
1.4 Behavior of the basic update operations . 4
1.5 A simple definition table application . 4

2 Definition Table Design Criteria 7
2.1 Criteria for selecting entities . 7
2.2 Criteria for grouping data values . 7

3 The Definition Table Interface 9
3.1 Predefined query and update operations . 9
3.2 The property definition language . 10

3.2.1 How to declare properties . 10
3.2.2 How to declare operations . 11
3.2.3 How to specify the initial state . 12

4 PDL Input Grammar . 15

Index . 17

1

The definition table is a data base in which the compiler stores information about de-
fined entities like types, variables and procedures. Each entity is represented by a unique
definition table key. Information about that entity is stored as an arbitrary number of
properties associated with its definition table key. The value of a particular property can
be set via an update operation and examined via a query operation. The definition table
module exports an operation that yields a new definition table key and a distinguished key
to represent an undefined entity that has no properties.

A user obtains a definition table module for a particular application by specifying the
set of properties to be stored by that module. Different information may be associated with
various kinds of entities, and specific items of information are determined at different times
by various parts of the compiler. These characteristics determine the best ways of grouping
individual items of information into properties, and it is possible to state general definition
table design criteria based upon them.

The definition table module provides standard query and update operations. Additional
operations are available from a library, and the user is allowed to define still others for
particular applications. All of these operations use the same interface for accessing the
definition table.

3

1 The Definition Table Module

The definition table module embodies the concept of a set of distinguishable entities, each
having some set of properties. There is at least one entity, the invalid entity; it has an
empty set of properties. No other entities exist unless they are explicitly created. Nothing
is assumed about entities, other than the fact that they are distinguishable.

Each distinct entity is represented by a distinct key. The module exports a key repre-
senting the invalid entity, and an operation that creates a new key each time it is invoked.

Properties are declared by the user. Each property declaration specifies the type of data
item that defines the property, but does not associate the property with any specific entity
or entities.

Query and update operations are used to associate property values with entities. Each
query or update operation is defined for a single property, and an invocation associates a
single value of the declared type with the entity to which the operation is applied.

To make the definition table module accessible to a program, include the header file
deftbl.h in that program.

1.1 How to create and use definition table keys

Definition table keys are objects of type DefTableKey. DefTableKey is a private type of
the definition table module: Clients of the definition table module may declare variables
and parameters of type DefTableKey, but they must make no assumptions about its rep-
resentation.

The invalid key is NoKey, a legal value of type DefTableKey. No property values are
ever associated with NoKey.

NewKey is a parameterless function that yields a value of type DefTableKey each time it
is invoked. All of these values are distinct from each other and from NoKey. Any client of
the definition table module may invoke NewKey.

Definition table keys are often bound to identifiers via the environment module opera-
tion DefineIdn (see Section “Contour-Model Environment Module” in Library Reference
Manual). In this case DefineIdn will invoke NewKey if necessary; NewKey should be invoked
directly only for entities that are not under control of the environment module.

It is sometimes useful to be able to get a new key that is just like an existing one. The
CloneKey operation takes a single key as argument, uses NewKey to get a new one, and
initialises the properties of the new key to be the same as those of the key argument. The
new key is returned.

Note that CloneKey implements shallow-copying of property values. For example, if a
property value of the key argument is a pointer then after the CloneKey call two keys will
have properties pointing to the same data.

1.2 How to declare properties

Each property has a name and a type.

A property type is denoted by a C identifier (a sequence of letters, digits and underscores
that does not begin with a digit). Property types must either be built-in types of C (such

4 Definition Table

as int), or they must be declared via typedef in some accessible module. The definition
table module then becomes a client of the module defining the property type.

A property name is also denoted by a C identifier. Property names must be unique, and
must be declared in a file of type .pdl. The simplest form of declaration is:

Name: Type;

Here Name is the property name being declared and Type is the data type of the possible
values for that property.

Any type that can be returned by a function can be used as the type of a property. If the
type is declared via typedef, some .pdl file must contain a C string (sequence of characters
delimited by " characters) that specifies the name of the file containing that declaration.

1.3 Behavior of the basic query operations

Each declared property has a basic query operation. If the name declared for the property
is Name, then the basic query operation is a function named GetName. If property Name has
been declared to have values of type Type, then the function implementing the basic query
operation has the following prototype:

Type GetName(DefTableKey key, Type deflt)

If GetName is applied to a definition table key with which a value of the Name property
has been associated, then GetName returns the associated value. Otherwise it returns the
value of parameter deflt.

Since NoKey represents an invalid entity that never has associated property values, ap-
plying any basic query operation to NoKey will yield the value of parameter deflt.

1.4 Behavior of the basic update operations

Each declared property is has two basic update operations. If the name declared for the
property is Name, then the basic update operations are functions named SetName and
ResetName. If property Name has been declared to have values of type Type, then the
functions implementing the basic update operations have the following prototypes:

void SetName(DefTableKey key, Type add, Type replace)

void ResetName(DefTableKey key, Type val)

If SetName is applied to a definition table key with which a value of the Name property has
been associated, then that value is replaced by the value of parameter replace. Otherwise
the value of parameter add becomes the value of the Name property associated with that
definition table key. Application of ResetName to a definition table key always results in
the value of the Name property being set to val.

Since NoKey represents an invalid entity that has no associated property values, applying
any basic update operation to NoKey has no effect.

1.5 A simple definition table application

Defining occurrences of identifiers are the points at which those identifiers are declared, while
applied occurrences are points at which they are used. In many programming languages,
it is possible to distinguish defining occurrences from applied occurrences on the basis of

Chapter 1: The Definition Table Module 5

context. Let us assume that this is the case, and use the definition table to verify that each
identifier has exactly one defining occurrence.

The environment module is used to implement the scope rules of the language, binding
a definition table key to each occurrence of an identifier. Within each individual scope, the
same key will be bound to all occurrences of a particular identifier. To verify that there is
a single defining occurrence, associate a property Def with the definition table key.

Def is of type integer, and three values are significant:

0 There is no defining occurrence

1 There is exactly one defining occurrence

2 There is more than one defining occurrence

At each defining occurrence, the update operation SetDef is invoked with the add pa-
rameter 1 and the replace parameter 2. After all defining occurrences are processed, the
Def property value 1 will be associated with the definition table key for each identifier hav-
ing exactly one defining occurrence. The Def property value 2 will be associated with the
definition table key for each identifier having more than one defining occurrence, and there
won’t be any Def property value associated with the definition table key for each identifier
without defining occurrences.

At each applied occurrence, the query operation GetDef is invoked with the deflt pa-
rameter 0. If the identifier has one or more defining occurrences, GetDef will yield the Def
property value (either 1 or 2) associated with the definition table key for the applied occur-
rence. Otherwise there will be no Def property value associated with the definition table
key for the applied occurrence, and GetDef will yield the value of the deflt parameter: 0.

7

2 Definition Table Design Criteria

There are many properties that might be of interest to a compiler. A Pascal compiler needs
to know the type and value of a constant. More information is needed for a variable: its type,
the static nesting level of the procedure containing its declaration, and where it is located
in the target machine’s memory. The compiler designer must decide how to represent this
information.

The first task in definition table design is to select the set of entities to be represented
by definition table keys. Then a set of properties must be defined to carry the information
associated with the entities. There is no need to specify relationships between properties
and entities: a value of any property may be associated with any entity.

2.1 Criteria for selecting entities

Identifier definitions must be represented by definition table keys if the normal environment
module is used. Whether there are other entities that should be represented by definition
table keys depends on the particular translation problem.

Entities that are invariably created by an identifier declaration can be represented by
the definition table key bound to that declaration. If an entity may be created without
being bound to an identifier, however, then it must be represented by a distinct definition
table key. For example, the following Pascal variable declaration defines an identifier and
creates a variable bound to that identifier, but also creates a type that is not bound to any
identifier:

var I: 1..10;

A Pascal compiler could use one key for the definition of I and the variable, since Pascal
variables are created only in conjunction with identifier declarations. It must use a sepa-
rate key for the subrange type, however, since types can be created without declaring any
identifier.

Distinct definition table keys should be used for generated entities that are “similar”
to user-defined entities. For example, Pascal labels are created only in conjunction with
label definitions; a user-defined label entity can therefore be represented by the definition
table key requested by the environment module to represent the label definition. A Pascal
compiler will probably create labels in the course of translating statements like if, case
and while. These labels should also be represented by definition table keys (obtained from
NewKey) to maintain compatibility with user-defined labels. This compatibility is important
because of the semantics common to generated and user-defined labels. If it is necessary to
distinguish the two, that is easily done via a Boolean property.

2.2 Criteria for grouping data values

Each definition table key provides access to information about an entity. The information
is embodied in a set of properties. How should those properties be defined?

One possibility is to define a single property to carry all of the information associated
with a particular definition table entry. That property would be a structure, with distinct
fields to hold the distinct items of information. There is a subtle problem with this approach:
Because the items of information associated with an entity are determined at different times

8 Definition Table

by different modules, fields of the structure will be undefined for various periods during its
lifetime. If, through an oversight in the design, the compiler accesses one of these undefined
fields, then it may very well crash. Such errors are often extremely difficult to diagnose,
and the compiler development time is thus increased unnecessarily.

A better approach is to group related information that is obtained at a particular point
in the compilation as a single property, and to leave unrelated information or information
that is obtained at several different points as separate properties. When a property value is
set, that value is complete (if any information was not available at the time, it would have
been treated as a separate property), and any query must supply a consistent default value
to be returned in case the desired property is not available.

In general, it is better to err on the side of too many properties than too few. Each
definition table key is actually implemented as a pointer to a list, with the properties being
elements of that list. The list element consists of a code identifying the property and a block
of storage large enough to hold a value of the property’s type. The length of the list for a
particular definition table key is the number of values that have actually been associated
with that definition table key. If no update operation is performed for a particular property
on an entity, nothing is stored for that property. A valid value is guaranteed to be returned
from a query operation because of the default argument supplied to the query call. A default
value for a property can be simulated by always using the same value every time the query
operation is used for that property.

When properties are combined, the number of list entries may be reduced. (This is not
always the case, because two distinct properties only require one list element if one of these
properties has its default value.) If the number of list entries is reduced, the time to access
properties is reduced. Normally, however, property lists are short and the time to access
properties is an insignificant fraction of the total processing time. Thus there is usually
little payoff in access time from combining properties.

9

3 The Definition Table Interface

The interface to the definition table module has two parts, one fixed and the other dependent
on a specification supplied by the user. The fixed part of the interface exports the value
NoKey and the operation NewKey (see Section 1.1 [How to create and use definition table
keys], page 3). The variable part of the interface exports the query and update operations
for the properties specified by the user.

A library of predefined query and update operations is provided to implement common
tasks; users can also provide their own operations. The set of operations and properties for
a specific processor is defined by a specification written in a special-purpose language.

PDL generates definitions for each of the operations specified in files of type .pdl.
These definitions are made available in the generated file pdl_gen.h. Although this file is
automatically included for use in your attribute grammar specifications, any C files which
use definition table operations must include this file.

3.1 Predefined query and update operations

The basic query and update operations for the Name property are GetName (see Section 1.3
[Behavior of the basic query operations], page 4), SetName, and ResetName (see Section 1.4
[Behavior of the basic update operations], page 4). These operations are sufficient in most
cases, and are provided automatically for every property. Other operations, such as IsName
and UniqueName are available, but must be explicitly requested as discussed in the next
section.

void IsName(DefTableKey key, Type which, Type error)

If IsName is applied to a definition table key that has no associated Name property, then
a Name property with the value of parameter which becomes associated with that definition
table key as a result of the operation. If it is applied to a definition table key that does
have an associated Name property, and the current value of that property is not equal to
the value of the parameter which, then the value of that property is changed to the value
of the parameter error. Otherwise the operation has no effect.

Since NoKey represents an invalid entity that has no properties, applying IsName to
NoKey has no effect.

void UniqueName(DefTableKey key, Type next())

If UniqueName is applied to a definition table key that has no associated Name prop-
erty, then a Name property with the value returned by the invocation of parameter next

becomes associated with that definition table key as a result of the operation. Otherwise
the operation has no effect.

Since NoKey represents an invalid entity that has no properties, applying UniqueName to
NoKey has no effect.

Parameter next is invoked if and only if UniqueName is applied to a definition table key
that differs from NoKey and has no associated Name property.

int HasName(DefTableKey key)

If Has is applied to a definition table key that has an associated Name property, then it
yields 1; otherwise it yields 0.

10 Definition Table

Since NoKey represents an invalid entity that has no properties, applying Has to NoKey

yields 0.

3.2 The property definition language

The property definition language allows a user to specify an arbitrary set of properties of
arbitrary types, to assert that certain operations from the library should be available to
query or update these properties, and to define new operations. It also allows a user to
establish the initial state of the definition table. Specifications in the property definition
language are distinguished by being provided in files of type pdl.

An arbitrary number of such files may be provided; they will be concatenated to form the
complete specification of the variable part of the definition table module’s interface. Each
file consists of a set of property and operation declarations as are described in the following
sections. Because the files are concatenated, specifications in one need not be repeated in
another. Nevertheless, we strongly suggest that each file contain a complete specification
for one or more tasks. This allows maximum reuse of existing text.

C pre-processor directives and C comments can be used in type-pdl files.

3.2.1 How to declare properties

Properties are declared by specifying the property name and type, optionally with a set of
operations that should apply to properties of the type specified. If the type is defined by a
typedef, and is not equal to DefTableKey, the file containing the typedef must be specified.

The general form of a property declaration is given by:

PropertySpec: FileName / PropertyDecl .

FileName: String .

PropertyDecl: PropertyNameList ’:’ Type ’;’ .

PropertyNameList: Identifier / PropertyNameList ’,’ Identifier .

Type: Identifier / Identifier ’[’ OperationList ’]’ .

OperationList: Identifier / OperationList ’,’ Identifier .

Both String and Identifier are constructed according to the rules of C. The FileName
string must be a valid file name. Each Identifier appearing in a PropertyNameList is
a defining occurrence; all other occurrences of Identifier are applied. Multiple defining
occurrences for property names are allowed, provided that they all define the property to
hold values of the same type.

Operation names are formed by concatenating an Identifier appearing in an
OperationList with an Identifier appearing in a PropertyNameList. Reset, Get

and Set are automatically defined for every property, and need not appear in any
OperationList.

Here are some valid property definitions:

Def, Kind: int;

Type: DefTableKey [Is];

Storage: StorageRequired; "Storage.h"

Def and Kind are integer-valued properties. The variable part of the definition table inter-
face will export operations GetDef, SetDef, ResetDef, GetKind, SetKind, and ResetKind.

Chapter 3: The Definition Table Interface 11

It will also export GetType, SetType, ResetType, and IsType because the library opera-
tion Is appears in the OperationList on the second line. Note that this specification will
produce GetStorage, SetStorage, and ResetStorage, but will not produce IsStorage,
because Is does not appear in any OperationList for the property Storage. If Is did
appear in an OperationList for the property Storage anywhere in the specification, even
in another type-pdl file, then the generated module would export IsStorage.

Type int is a primitive type of C, and DefTableKey is defined by the definition table
module itself. Thus neither of these types needs to be defined specially. StorageRequired
must be defined, however, and therefore file storage.h is named explicitly (see Section
“Storage Allocation Module” in Library Reference Manual). This file name could be placed
anywhere in the specification, even in another type-pdl file. The order in which such header
files are named within any given pdl file is maintained in the generated modules.

3.2.2 How to declare operations

Operations can be declared by specifying a name, a prototype and a body. The operations
are generic, with the operand and result types depending on the type of the property for
which the generic operation is associated (see Section 3.2.1 [How to declare properties],
page 10). If an operation is declared to have the same name as one present in the library,
the user-defined operation will take precedence.

The general form of an operation declaration is given by:

OperationDecl: Gtype Identifier ’(’ Parameters ’)’ Text .

Gtype: ’TYPE’ / Ctype .

Parameters: Parameter / Parameters ’,’ Parameter .

Parameter: Gtype Identifier .

TYPE is used to represent the type of the property with which the operation is associated,
while Ctype stands for any valid C type declarator. One of the parameters (by convention
the first) must be of type DefTableKey, and must have the name key; the other parameters
are arbitrary.

Text is any C compound statement, enclosed in {}. Within this compound statement,
certain macros may be used:

PRESENT Returns true if the property has an associated value and false if it does not.

ACCESS The return value is the same as that of PRESENT, but ACCESS guarantees
that space has been allocated for the property after invocation.

VALUE Current value of the property.

The VALUE macro can be used either as the source of an existing value or the destination
for a new value. It is defined after an invocation of the ACCESS macro, or whenever the
PRESENT macro returns true.

Here is the declaration of the basic query operation from the library:

TYPE Get(DefTableKey key, TYPE deflt)

{ if (key == NoKey) return deflt;

if (PRESENT) return VALUE;

else return deflt;

}

12 Definition Table

The type of the value returned by a Get operation is the type of the associated property
(TYPE), which is also the type of the deflt parameter. PRESENT is used to check whether a
value is associated with the property, and if so that value (VALUE) is returned.

Here is the declaration of the Set operation from the library:

void Set(DefTableKey key, TYPE add, TYPE replace)

{ if (key == NoKey) return;

if (ACCESS) VALUE = replace;

else VALUE = add;

}

No value is returned by a Set operation. ACCESS is used to check whether a value is
associated with the property, and also to guarantee that space for a value is available. The
available space is then filled appropriately.

Here is the declaration of the Reset operation from the library:

void Reset(DefTableKey key, TYPE val)

{ if (key == NoKey) return;

ACCESS; VALUE = val;

}

No value is returned by a Reset operation. ACCESS is used to ensure that space is made
available to hold the value of the property. The value is then set to val.

Here is the declaration of the conditional update operation from the library:

void Is(DefTableKey key, TYPE which, TYPE error)

{ if (key == NoKey) return;

if (!ACCESS) VALUE = which;

else if (VALUE != which) VALUE = error;

}

Here is the library operation that guarantees a unique value for a property:

void Unique(DefTableKey key, TYPE next())

{ if (key == NoKey) return;

if (!ACCESS) VALUE = next();

}

The next parameter is a function that delivers a new value of the type of the associated
property each time it is called. It will be invoked only when there is currently no value
associated with the property.

3.2.3 How to specify the initial state

The initial state of the definition table consists of a set of known keys, some of which may
have associated property values. Each known key is represented by an identifier, which can
be used anywhere that a value of type DefTableKey is required.

The general form of a known key specification is given by:

KnownKey: Identifier PropertyValueList ’;’ .

PropertyValueList: / ’->’ PropertyValues .

PropertyValues: PropertyValue // ’,’ .

PropertyValue: Identifier ’=’ Text .

Chapter 3: The Definition Table Interface 13

Text is any C initializer valid for the type of the property, enclosed in {}. It may
contain constant identifiers, including identifiers that represent known keys, regardless of
where they are declared. Each Identifier appearing in a PropertyValue must be declared
elsewhere in the PDL specification (i.e. in some type-pdl file, see Section 3.2 [How to declare
properties], page 10).

Here are some valid specifications of known keys:

ErrorType;

IntegerKey -> Def={1}, Type={IntegerType};

IntegerType -> Storage = {4,4,0};

The known key ErrorType has no properties initially, while the known key IntegerKey

has two and the known key IntegerType has one. All of these properties were declared
above (see Section 3.2 [How to declare properties], page 10). IntegerType is a value of type
DefTableKey, and is therefore a valid initializer for the Type property of IntegerKey. To
see that the initializer given for the Storage property of IntegerType is valid, one would
need to consult the file storage.h. That file is the interface specification for the data
mapping module, and its name appeared in the declaration of the Storage property.

15

4 PDL Input Grammar

Source: Spec .

Spec: (PropertyDecl / FileDecl / OperationDecl / KnownKeyDecl)* .

PropertyDecl: PropertyNameList ’:’ Type ’;’ .

PropertyNameList: Identifier / PropertyNameList ’,’ Identifier .

Type: Identifier / Identifier ’[’ OperationList ’]’ .

OperationList: Identifier / OperationList ’,’ Identifier .

FileDecl: String .

OperationDecl: Gtype Identifier ’(’ Parameters ’)’ Text .

Gtype: ’TYPE’ / Ctype .

Parameters: Parameter / Parameters ’,’ Parameter .

Parameter: Gtype Identifier .

KnownKeyDecl: Identifier PropertyValueList ’;’ .

PropertyValueList: / ’->’ PropertyValues .

PropertyValues: PropertyValue // ’,’ .

PropertyValue: Identifier ’=’ Text .

In the above grammar, Text refers to a C block enclosed in braces.

17

Index

.

.pdl . 4

A
ACCESS . 11
anonymous entities . 7

C
CloneKey . 3
cloning keys . 3
combining properties . 7
comments . 10
creating keys . 3

D
DefineIdn . 3
definition table design . 7
DefTableKey . 3
deftbl.h . 3

E
environment module . 3
example application . 4
example operation declaration 11

G
Get . 11
Get operations . 4

H
Has . 9

I
initialization grammar . 12
invalid key . 3
Is . 9, 12
IsName . 9

K
key . 3
known keys . 12

M
multiple property definitions 10

N
NewKey . 3, 9
NoKey . 3, 4, 9

O
operation macros . 11
operation names . 10

P
pdl . 10
pdl_gen.h . 9
pre-processor directives . 10
PRESENT . 11
property declaration . 4
property definition language 10
property name . 3
property specification . 10
property type . 3

Q
query and update operations 9
query operation . 4

R
Reset . 12
Reset operation . 4

S
selecting entities . 7
Set . 12
Set operations . 4
specification grammar . 10, 11
specifications . 10

U
Unique . 9, 12
uniqueness of property names 4
update operation . 4

V
VALUE . 11
variable entities . 7

	1 The Definition Table Module
	How to create and use definition table keys
	How to declare properties
	Behavior of the basic query operations
	Behavior of the basic update operations
	A simple definition table application

	2 Definition Table Design Criteria
	Criteria for selecting entities
	Criteria for grouping data values

	3 The Definition Table Interface
	Predefined query and update operations
	The property definition language
	How to declare properties
	How to declare operations
	How to specify the initial state

	4 PDL Input Grammar
	Index

