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This library contains a module and a set of roles that can be used to implement the name
analysis task for both simple languages with nested scopes and complex languages that
may involve inheritance, context-dependent access rules, and arbitrary developer-defined
relations.

The ScopeGraphs specification module is instantiated in a specs file with or without an
instance argument:

$/Name/ScopeGraphs.gnrc+instance=NLO_:inst

$/Name/ScopeGraphs.gnrc:inst

If the instantiation has an instance argument, the value of that argument is prefixed
to every name exported by that instantiation. For example, one of the names exported
by the first instantiation above would be NLO_RootScope. The second instantiation would
export the name RootScope because that instantiation has no instance argument. In this
document we prefix each exported names with an asterisk (e.g. *RootScope) to indicate
that the value of the instance argument will be added as a prefix added to that name. For
an explanation of why multiple instantiations might be necessary, see Section 1.1 [Scope
graphs], page 4.

We begin by describing the model underlying the ScopeGraphs module (see Chapter 1
[Fundamentals of Name Analysis], page 3), and sketch properties of an abstract syntax
tree that facilitate use of the module’s computational roles (see Chapter 2 [Tree Grammar
Preconditions], page 9). The module provides roles to support constructing a scope graph
(see Chapter 3 [Establishing the Structure of a Scope Graph], page 13), creating bindings
for defining occurrences (see Chapter 4 [Defining Occurrences], page 19), and searching for
bindings given an applied occurrence (see Chapter 5 [Applied Occurrences], page 21). There
is an efficient representation for a set of isomorphic scope graphs (see Chapter 6 [Isomorphic
Scope Graphs], page 27), and a developer can provide analysis functions tailored to a specific
language (see Chapter 7 [Implementing Language-Specific Behavior], page 29).

Name analysis computations are interdependent, and depend on other computations
such as type analysis. In an attribute grammar specification, it is often necessary to make
this dependence explicit to ensure that computations will be correctly ordered (see Section
“Dependent Computations” in LIDO – Computations in Trees).

Two modules related to the ScopeGraphs module can be used to create predefined iden-
tifiers (see Chapter 8 [Pre-defined Identifiers], page 39), and generate a test system (see
Chapter 9 [Name Analysis Testing], page 41).

Finally, we describe the functions that are used to support the computational roles and
can be invoked directly by the developer to tailor the process to unusual languages (see
Chapter 10 [Application Program Interface], page 43).
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1 Fundamentals of Name Analysis

Identifiers are basic symbols of a language. Each occurrence of an identifier in a program
corresponds to a leaf of the abstract syntax tree of that program. A programmer uses a
freely-chosen identifier to represent some entity in the program’s universe. The task of name
analysis is to discover the entity represented by each identifier occurrence. Four concepts
relating identifiers to the entities they represent are necessary to describe this task:

• A binding is a pair consisting of an identifier ‘i’ and an entity ‘k’.

• A scope is a contiguous sequence of program text associated with a set of bindings. We
say that a binding in the set has the scope.

• A defining occurrence is an occurrence of an identifier ‘i’ that could legally be the only
occurrence of that identifier in the program. A binding ‘(i,k)’ is associated with each
defining occurrence.

Language rules specify the scope of a defining occurrence, and thus a scope of
the binding associated with that defining occurrence. Other language rules may
specify further scopes of a binding that are not in the context of the defining
occurrence.

• An applied occurrence is an occurrence of an identifier ‘i’ that is legal only if it identifies
a binding ‘(i,k)’ in some set associated with its context.

Language rules specify the set(s) in which an applied occurrence may identify
bindings.

Defining occurrences, applied occurrences, and scopes are concepts related to the program
text; how are these concepts represented in the tree? Each identifier occurrence is a single
basic symbol in the text, and is represented by a leaf of the tree. A scope, on the other
hand, extends over some region of the text. The developer needs to map each scope to an
abstract syntax subtree encompassing that scope. We call such a subtree a range; several
scopes may map into the same range.

Because a defining occurrence may be the only occurrence of that identifier, the entity
and range of the binding must be determined from the syntactic context of the corresponding
abstract syntax tree leaf. The way in which this is done is language dependent, but involves
no name analysis. Bindings for defining occurrences can therefore be regarded as constants
for the purposes of name analysis.

Name analysis is a computation carried out on the tree that is the internal represen-
tation of the program being analyzed; its goal is to determine the appropriate binding for
each applied occurrence, based on the concepts and language rules discussed above. That
computation is specified in terms of the abstract syntax, and takes the form of assignments
of values to attributes of tree nodes (see Section “Computations” in LIDO - Reference
Manual).

The search for a binding for an applied occurrence begins in the range containing that
applied occurrence. If the identifier is not bound in that range, then most languages require
the search to continue in related ranges. Ranges may be related syntactically, but many
languages also allow the programmer to specify arbitrary relationships as part of their
program. Such relationships cannot reasonably be described in terms of the abstract syntax
tree. Thus the name analyzer builds a separate data structure, a directed graph called a
scope graph, to encode the relationships among ranges.
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The ScopeGraphs specification module provides a generic lookup algorithm to imple-
ment the search for a binding in a scope graph. A language definition may specify context
conditions to determine whether or not a binding found by the generic algorithm is appro-
priate. If the binding is not appropriate, language rules may require either that the search
be continued (possibly with some restriction) or abandoned. Such rules can be enforced by
developer-coded functions that are invoked by the generic algorithm whenever a binding for
the applied occurrence is found (see Chapter 7 [Language], page 29).

The task of type analysis is to establish the type associated with every program construct
(parameters, variables, expressions, etc.) that has a type (see Type Analysis Reference Man-
ual). Name analysis of a program written in a simple language can often be completed before
beginning the type analysis, but this is not possible in general. Rather than considering
name and type analyzers as monolithic processes, we need to think of them as collections
of computations to be applied in particular linguistic contexts. Each computation requires
certain inputs and delivers certain outputs; it can be applied whenever the necessary inputs
are available.

1.1 Scope graphs

Each node of a scope graph corresponds to a range, and each edge defines a relationship
between ranges. We say that node n is the tail of edge (n, n′) and node n′ is its tip.

There are two kinds of edges, parent edges and path edges. A parent edge defines
a textual containment relationship that is established by the syntactic structure of the
program, while a path edge defines a relationship established by the semantics of some
program construct.

We label node n with a partial function Bind(n) : (identifier 7→ entity) specifying the
bindings associated with the range corresponding to node n, and we label each path edge of
a scope graph with a positive integer further classifying that path edge. A node may have
an arbitrary number of path edges incident upon it. A scope graph may be cyclic, provided
each cycle contains at least one path edge.

Some languages allow a programmer to use the same identifier to represent entities of
different kinds in the same region of the program. It may also be the case that the ranges
associated with different kinds of identifiers are different. Because of these properties, the
ScopeGraphs specification module requires the developer to use a distinct scope graph for
each kind of identifier. When a particular kind of identifier has a unique set of ranges, as
does the label identifier in Java, a unique instantiation of the ScopeGraphs specification
module is required for that kind of identifier. Often, however, a number of different kinds of
identifier share the same set of ranges. (For example, field identifiers and method identifiers
in Java share the same set of ranges.) In this case, the scope graphs for the different kinds of
identifier are isomorphic and a single instantiation of the ScopeGraphs specification module
can be used for all (see Chapter 6 [Isomorphic Scope Graphs], page 27).

1.2 The generic lookup

The generic lookup algorithm implements the search for an applied occurrence’s binding.
An applied occurrence ‘i’ can appear on its own as a simple name, or it can be a component
of a qualified name like ‘q.i’. (Here ‘q’ is the qualifier, and may itself be a qualified name.
The leftmost applied occurrence in ‘q’ is considered to be a simple name.) If a binding is
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being sought for a simple name, the search begins at the scope graph node for the smallest
range containing that applied occurrence; otherwise the search begins at the scope graph
node for the entity named by the qualifier.

Suppose that the search begins at node n of a scope graph. The generic algorithm first
checks Bind(n). If Bind(n) does not contain an appropriate binding, the algorithm explores
all paths starting at node n and made up solely of edges labeled 1. At each node ni on
those paths, Bind(ni) is checked before continuing.

If the applied occurrence is qualified, and if no binding is found after exploring all paths
with label 1, the algorithm reports that there is no binding for the applied occurrence. This
behavior implements the normal semantics of a qualified name, if the path edges labeled 1
represent an inheritance relation: the binding must be in the entity named by the qualifier,
or it must be in some entity from which the qualifier inherits.

The binding for a simple name might be inherited, but it might also be imported into
the range for the scope graph node n or be found in an outer range n′. A developer would
use integers larger than 1 to label path edges that express semantic relations like import,
or that tune the generic lookup. In general, if no binding is found for a simple name after
traversing all paths starting at node n and made up solely of edges labeled k, the process
is repeated with paths starting at node n and made up solely of edges labeled k + 1. This
search continues until either a binding is found or the value k + 1 is not an edge label.
The developer must take that behavior into account when selecting edge labels to represent
specific relationships.

If no binding is found starting at node n for a simple name, and if there is a parent edge
n → n′, then the algorithm re-starts at node n′. Note that the new search beginning at
node n′ is completely independent of the one that started at node n.

Whenever the generic lookup algorithm finds a node whose Bind function contains a
binding for the applied occurrence, it invokes a specified function (see Chapter 7 [Lan-
guage], page 29). The module contains default implementations of these functions, but the
developer can easily override those defaults to provide language-specific behavior. (The
default implementation simply accepts the binding found.)

If the largest path edge label, ‘MaxLabel’, is greater than 1, then the developer must
provide a file named ScopeGraphs.h as part of the specification. ScopeGraphs.h must
contain the following declaration:

#define MaxKindsPathEdge ‘MaxLabel’

The syntactic context of a defining occurrence must determine the scope graph in which
it is bound, but the syntactic context of an applied occurrence might not. When a unique
scope graph cannot be determined for an applied occurrence from its syntactic context, the
generic algorithm conducts a search in each of the possible graphs. If there is more than
one result from these searches, a language-dependent disambiguation process must be used
(see Chapter 7 [Language], page 29).

1.3 Interaction with type analysis

Consider the construct ‘v.f’, where ‘v’ is a variable of a record type and ‘f’ is a field of
that record. Name analysis can find the key bound to ‘v’, which will represent a variable.
However, the field name ‘f’ is bound in the range associated with the type of that variable,
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not with the variable itself. In order to apply the generic lookup to ‘f’ in ‘v.f’, some
computation of the type analyzer must establish the type associated with the variable ‘v’.
Because the qualifier is a type, we call a construct like ‘v.f’ a type-qualified name.

If an applied occurrence can be distinguished syntactically as a typed entity use, the
type is guaranteed to be available (see Section “Accessing the type of an entity” in Type
Analysis Reference Manual). This is not generally true for a type-qualified name, where
the identifiers may denote either types (such as Java classes) or typed entities (such as Java
fields). Here the value of a property of the key bound to the identifier must be accessed to
obtain the type, and some dependence relation must guarantee that the property’s value
has been set. If Eli’s Typing module is used, the appropriate relation can be established
by:

CLASS SYMBOL TypedDefId INHERITS *SetTypeOfEntity END;

CLASS SYMBOL TypedUseId COMPUTE

SYNT.TypeIsSet=INCLUDING OutSideInDeps.GotEntityTypes;

END;

Note that only one instantiation of the ScopeGraphs module can interact with Eli’s Typing
module.

In some languages, a type-qualified name may define the tip of a path edge. Examples of
such situations are the Pascal with statement and the Java anonymous class. This situation
is problematic because both name and type analysis computations are necessary to resolve
the tip name, but the scope graph is not complete without the path edge.

A Pascal with statement or a Java anonymous class corresponds to a subgraph, W , of
the scope graph G. The rules of the language are such that G will never contain any edge
whose tip is in W and whose tail is in G −W . That means that name analysis in G −W
can never depend on any information from W .

Suppose that we partition the analysis of a program containing such constructs, com-
pleting both name and type analysis in G −W before examining any applied occurrences
in W . Since the type-qualified name defining the tip of the path edge in question lies in
the text corresponding to W , but all of its component bindings are defined in G−W , all of
the necessary information for creating the path edge will be available when analyzing W .
Moreover, the missing path edge will be irrelevant for the analysis of G−W .

A different kind of interaction between name and type analysis occurs when the language
permits a single function name to describe several distinct operations. In this case, a
range may contain more than one defining occurrence for the function identifier, each of
which denotes a different entity. We say that in such a situation the function identifier is
overloaded.

Because Bind(n) is a function, there is a single binding for an overloaded function
identifier in a given range. The key to which the function identifier is bound represents an
indication that is associated with the set of operations described by the defining occurrences
(see Section “Selecting an operator at an expression node” in Type Analysis Reference
Manual). The operations in the set are distinguished by the types of operands they require,
information that must be derived from type analysis computations.

If none of the operations whose defining occurrences lie in a particular range satisfies the
requirements of the actual operands, then the language may require that the search continue
in the normal way (see Section 1.2 [The generic lookup], page 4). In this case, name analysis
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computations advancing the lookup alternate with type analysis computations attempting
to identify the indications found.
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2 Tree Grammar Preconditions

The ScopeGraphs specification module provides computational roles to be inherited by
nonterminal symbols of the abstract syntax tree. To make effective use of these roles, the
abstract syntax tree must be designed with them in mind. Generally speaking, that means
that the abstract syntax tree structure will differ somewhat from the structure of the parse
tree. Eli offers tools that aid in mapping a parse tree to an appropriate abstract syntax tree
(see Section “The Relationship Between Phrases and Tree Nodes” in Syntactic Analysis).

A developer can often use the parsing grammar provided by the language designer, and
define simple mapping rules to obtain the desired abstract syntax tree (see Section “Syntax
development hints” in Syntactic Analysis). Sometimes, however, a change in the parsing
grammar is required. That can lead to difficulties, depending on the parsing algorithm (see
Section “How to Resolve Parsing Conflicts” in Syntactic Analysis).

2.1 Representation of identifiers

An identifier is a basic symbol of the language being analyzed, and will correspond to a
named terminal symbol of the concrete grammar describing the input text. (Typically
the terminal symbol is named ‘Identifier’ or ‘Ident’.) Named terminal symbols do not
contribute to the trees specified by the tree grammar, but a value derived from the basic
symbol may be used in computations associated with the rule of a production or with
the symbol on the left-hand side of a production (see Section “Productions” in LIDO –
Reference Manual). A unique integer value is typically derived from each identifier by the
token processor mkidn (see Section “Available processors” in Lexical Analysis).

Identifiers usually play different roles in different syntactic contexts. We recommend
that these distinctions not be made in the concrete syntax. The concrete syntax should use
the same named terminal (e.g. Ident) to represent identifiers in every context. Syntactic
contexts should be distinguished in the abstract syntax by LIDO RULEs.

Consider the concrete productions

ObjDecl: TypeDenoter Ident.

TypeDenoter: Ident.

Variable: Ident.

We distinguish the different roles of identifiers by introducing new symbol names in the
corresponding LIDO RULEs:

RULE: ObjDecl ::= TypeDenoter DefIdent END;

RULE: TypeDenoter ::= TypeUseIdent END;

RULE: Variable ::= UseIdent END;

The new symbol names must, of course, be defined:

RULE: DefIdent ::= Ident END;

RULE: UseIdent ::= Ident END;

RULE: TypeUseIdent ::= Ident END;

2.2 Representation of ranges

Recall that a range is a subtree of the abstract syntax tree that encompasses a scope. Most
programming languages allow nested scopes, and allow the meaning of an identifier in an
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inner scope to differ from the meaning in an outer scope. In that case, we say that the
identifier’s binding from the outer scope is not visible in the inner scope. The developer’s
goal for the abstract syntax tree should be that each range encompasses a scope containing
all occurrences of identifiers defined in that scope but not containing any defining occurrence
whose binding is visible outside of that scope.

For example, consider the following grammar fragment:

ProcedureDeclaration:

’procedure’ ProcedureHeading ProcedureBody /

Type ’procedure’ ProcedureHeading ProcedureBody .

ProcedureHeading:

ProcedureIdentifier FormalParameterPart ’;’

ValuePart SpecificationPart .

ProcedureIdentifier: Identifier .

ProcedureBody: Statement .

A ProcedureDeclaration is nested inside a block (not shown) and the semantics of the
language make the ProcedureIdentifier visible in the range containing that block.
FormalParameterPart, ValuePart, SpecificationPart, and Statement all belong to a
single range whose bindings are visible within the ProcedureDeclaration. An abstract
syntax tree corresponding to this grammar does not meet our goal: ProcedureDeclaration
is the only region containing all identifier occurrences defined in the procedure, but it
also contains the defining occurrence ProcedureIdentifier that is visible outside of the
region.

The solution is to add a nonterminal ProcedureRange to the grammar:

ProcedureDeclaration:

’procedure’ ProcedureIdentifier ProcedureRange /

Type ’procedure’ ProcedureIdentifier ProcedureRange .

ProcedureIdentifier: Identifier .

ProcedureRange:

ProcedureHeading ProcedureBody .

ProcedureHeading:

FormalParameterPart ’;’ ValuePart SpecificationPart .

ProcedureBody: Statement .

Here the ProcedureRange subtree contains all occurrences of identifiers defined in the pro-
cedure, and does not contain the defining occurrence ProcedureIdentifier.

The ProcedureHeading can be considered to be the interface to the procedure, and
the ProcedureBody to be the implementation of that interface. Suppose that the language
allows the interface and its implementation to be widely separated, instead of packaged into
a single declaration:

ProcedureInterface:

’procedure’ ProcedureIdentifier ProcedureHeading /

Type ’procedure’ ProcedureIdentifier ProcedureHeading .

ProcedureImplementation:

’implementation’ ProcedureIdentifier ProcedureBody .
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The ProcedureInterface and ProcedureImplementation are both nested within the same
block (not shown) and the semantics of the language make the ProcedureIdentifier visible
in the range containing that block.

The ProcedureHeading and ProcedureBody are now completely disjoint subtrees; there
is no ProcedureRange to contain them. Together, they contain all occurrences of identifiers
defined in the procedure and therefore together play the same role as the ProcedureRange
subtree in the previous example.

We have defined a scope as a contiguous sequence of program text, and said that the
developer needs to map each scope to an abstract syntax subtree encompassing that scope
(see Chapter 1 [Fundamentals of Name Analysis], page 3). In order to deal with separate
interface and implementation, it is convenient to generalize these concepts by allowing
a scope to be a set of disjoint contiguous sequences of program text, and requiring the
developer to map these regions into an abstract syntax tree subforest that encompasses
those sequences. The subforest then has the desired properties of a range: it contains all of
the occurrences in the scope, and does not contain any defining occurrence whose binding
is visible outside.
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3 Establishing the Structure of a Scope Graph

Each instantiation of the ScopeGraphs specification module implements a set of isomorphic
scope graphs (see Section 1.1 [Scope graphs], page 4). Because the graphs are isomorphic,
they can all be described by a single set of ranges and the relationships among those
ranges. A range is represented by a a value of type NodeTuplePtr. NodeTuplePtr has a
distinguished value, NoNodeTuple, that represents no range. By default, an instantiation of
the module implements a singleton scope graph set; for the implementation of larger sets,
see Chapter 6 [Isomorphic Scope Graphs], page 27. If different kinds of entities are bound
in differently-structured ranges, then the binding and lookup of those kinds of identifiers
must appear in a specific instantiation of the ScopeGraphs for each range structure.

The module provides three computational roles to establish ranges and relate them to
the abstract syntax tree (see Section 2.2 [Representation of ranges], page 9). These roles
also define any parent edges. A separate role is used to define path edges that do not depend
on applied occurrences. (For path edges whose tips are defined by applied occurrences, see
Section 5.1 [Worklist search], page 22.)

A role is also provided to partition a scope graph in order to deal with path edges whose
tips are defined by type-qualified names (see Section 1.3 [Interaction with type analysis],
page 5).

3.1 The RootScope role

The *RootScope role is automatically inherited by the root symbol of the grammar. It
provides the following attributes:

*Env is a NodeTuplePtr-valued attribute representing a range with the bindings de-
fined at the root of the grammar. This attribute is set by a module computation
that must never be overridden by the developer.

*ScopeKey

is a DefTableKey-valued attribute set by a module computation to the value
NoKey. This computation must never be overridden by the developer.

*GotEnv is a VOID attribute representing the computation state in which:

• all scope graph nodes have been created

• all defining occurrences have been bound

• all computation states represented by *IdDef.*GotDefKeyProp attributes
have been reached (see Chapter 4 [Defining Occurrences], page 19).

This attribute is set by a module computation that must never be overridden
by the developer.

Whether or not identifiers are actually bound in *RootScope.*Env depends on the char-
acteristics of the language and how the developer chooses to model program structure.
For example, some languages provide built-in identifiers that are said to be “defined in
a fictitious outer block”. Such a situation is best handled by binding those identifiers in
*RootScope.*Env.

See Section 10.1 [The state of an instantiation], page 43, for a discussion of computation
state.
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3.2 The RangeScope role

The *RangeScope role should be inherited by any symbol (other than the root of the
grammar) that is the root of a subtree containing defining occurrences (see Section 2.2
[Representation of ranges], page 9). It provides the following attributes:

*Env is a NodeTuplePtr-valued attribute representing the range with the bindings
defined in this range. This attribute is set by a module computation.

*Parent is a NodeTuplePtr-valued attribute representing the range of the scope graph
node that should be the tip of this node’s parent edge (see Chapter 1 [Funda-
mentals of Name Analysis], page 3). This inherited attribute is set by a module
computation to the value of INCLUDING *AnyScope.*Env.

*ScopeKey

is a DefTableKey-valued attribute allowing the developer to associate a program
entity with this range. This inherited attribute is set by a module computation
to the value NoKey, indicating that the range has no associated entity.

If an overriding user computation sets the *ScopeKey attribute to ‘key’, then
we say that the program entity represented by ‘key’ owns the range. A module
computation then sets the following property of ‘key’:

OwnedNodeTuple

is a NodeTuplePtr-valued property representing the value of the
*RangeScope.*Env attribute.

If ‘e’ is the value of a *RangeScope.*Env attribute, then
OwnerKeyOfNodeTuple(‘e’) yields the value ‘key’.

The default computation of Parent reflects the normal containment relation among
ranges: nested ranges correspond to nested subtrees of the abstract syntax tree (see
Section 2.2 [Representation of ranges], page 9). If no such relationship is defined by the
language, the developer should override the default computation:

CLASS SYMBOL RangeScope COMPUTE INH.Parent=NoNodeTuple; END;

This example overrides the computation in every RangeNode context. The computation can
also be overridden in a single context:

TREE SYMBOL record_type INHERITS RangeScope COMPUTE

INH.Parent=NoNodeTuple;

END;

or

RULE: new_type ::= record_type COMPUTE

record_type.Parent=NoNodeTuple;

END;

Ranges are often owned by program entities such as types or classes. Those entities are
represented by definition table keys, and the ownership relation between the range and the
entity is established by assigning the entity’s definition table key to the range’s *ScopeKey
attribute. The default computation of *ScopeKey must be overridden in this case.

For example, consider a record type whose characteristics are established by the
TypeDenotation role of the Typing module (see Section “Type denotations” in Type
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Analysis Reference Manual). That type denotation owns the scope graph node in which
field names are defined, and the ownership relation must be established:

TREE SYMBOL record_type INHERITS TypeDenotation, RangeScope COMPUTE

INH.ScopeKey=THIS.Type;

END;

There is no need for the entity’s definition table key to come from the same syntactic context
as the range; the only requirement is that it be assigned as the value of the *ScopeKey

attribute.

The *ScopeKey attribute is also the mechanism by which we tie together disjoint sub-
trees that form a single range: all of the subtrees in the range must have their *ScopeKey
attributes set to the same value. Consider the example at the end of Section 2.2 [Represen-
tation of ranges], page 9. The appropriate computations are:

SYMBOL ProcedureIdentifier INHERITS IdDefScope END;

SYMBOL ProcedureHeading INHERITS RangeScope END;

SYMBOL ProcedureBody INHERITS RangeScope END;

RULE ProcedureInterface ::=

’procedure’ ProcedureIdentifier ProcedureHeading

COMPUTE

ProcedureHeading.ScopeKey=ProcedureIdentifier.Key;

END;

RULE ProcedureInterface ::=

Type ’procedure’ ProcedureIdentifier ProcedureHeading

COMPUTE

ProcedureHeading.ScopeKey=ProcedureIdentifier.Key;

END;

RULE ProcedureImplementation ::=

’implementation’ ProcedureIdentifier ProcedureBody

COMPUTE

ProcedureBody.ScopeKey=ProcedureIdentifier.Key;

END;

Notice that the ProcedureIdentifier inherits the IdDefScope role (see Chapter 4 [Defin-
ing Occurrences], page 19). For a given procedure, the Key attribute will be the same for
each ProcedureIdentifier occurrence, because the two occurrences lie in the same range
(see Section 2.2 [Representation of ranges], page 9). Therefore the ScopeKey attributes of
the interface and implementation will be identical, placing these two disjoint subtrees in
the same range.

This example illustrates an important point: the value of the *ScopeKey attribute must
be obtained from either a defining occurrence or from an invocation of NewKey. Never
attempt to obtain a key from an applied occurrence; this would prevent the system from
finding an attribute evaluation order.
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3.3 The AnyScope role

The *AnyScope role is automatically inherited by any symbol inheriting either *RootScope
or *RangeScope.

There are many situations in which a computation needs information about the range in
which it is embedded. Any attribute of the enclosing range can be accessed via an INCLUDING

construct (see Section “INCLUDING” in LIDO – Reference Manual). AnyScope can be used
in INCLUDING constructs if RootScope and RangeScope need not be distinguished.

It is possible to define attributes and computations for AnyScope, but there is a small
problem: AnyScope is inherited by the root of the grammar, which cannot have any inherited
attributes. Therefore no attribute can be explicitly declared INH in AnyScope, and no INH

assignment can be defined in AnyScope (see Section “Attributes” in LIDO – Reference
Manual).

Env is an example of an attribute that is defined for AnyScope. It has class SYNT at
the root of the grammar, and class INH at all grammar nodes inheriting RangeScope. The
declaration of this attribute in AnyScope does not explicitly specify a class; the computation
of its value in RootScope specifies SYNT, and the computation of its value in RangeScope

specifies INH.

3.4 Path edge creation roles

When the tip of a path edge does not depend on an applied occurrence, the *BoundEdge

role is appropriate. (Use *WLCreateEdge when the tip depends on an applied occurrence:
see Chapter 5 [Worklist search], page 21.)

*BoundEdge should be inherited by some convenient symbol in a context where infor-
mation about the tip and tail of the path edge can be obtained. It provides the following
attributes:

*tailEnv is a NodeTuplePtr-valued attribute representing the range that is the tail of
the edge. This attribute must be set by a developer computation.

*toEnv is a NodeTuplePtr-valued attribute representing the range that is the tip of the
edge. This attribute must be set by a developer computation.

*label is an integer-valued attribute that contains the edge label (see Chapter 1 [Fun-
damentals of Name Analysis], page 3). This synthesized attribute is set by a
module computation to 1.

*EdgeKey is a DefTableKey-valued attribute representing the key of the created edge.
This attribute is set by a module computation.

A module computation sets the following properties of the value of the EdgeKey
attribute:

FromNodeTuple

is a NodeTuplePtr-valued property holding the value of the
*tailEnv attribute.

ToNodeTuple

is a NodeTuplePtr-valued property holding the value of the *toEnv
attribute.
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EdgeLabel

is an integer-valued property holding the value of the *label at-
tribute.

3.5 The OutSideInDeps role

The OutSideInDeps role is used to partition the abstract syntax tree into subtrees, in order
to bind type-qualified names of path edge tips incrementally. It is automatically inherited
by the root symbol, and can also be inherited by any symbol that inherits the RangeScope
role. OutSideInDeps defines a subgraph W of the scope graph G. No edge of G may have
its tail in G−W and its tip in W (see Section 1.3 [Interaction with type analysis], page 5).

The OutsideEdge role can be used to create edges that have their tails at the
OutSideInDeps node and their tips in G−W . It would be appropriate if several edges are
to be created for one OutSideInDeps node.

OutsideEdge provides the following attributes:

*tailEnv is a NodeTuplePtr-valued attribute representing the range that is the tail of
the edge. This attribute must be set by a developer computation.

*toEnv is a NodeTuplePtr-valued attribute representing the range that is the tip of the
edge. This attribute must be set by a developer computation.

*label is an integer-valued attribute that contains the edge label (see Chapter 1 [Fun-
damentals of Name Analysis], page 3). This synthesized attribute is set by a
module computation to 1.

*EdgeKey is a DefTableKey-valued attribute representing the key of the created edge.
This attribute is set by a module computation.

A module computation sets the following properties of the value of the EdgeKey
attribute:

FromNodeTuple

is a NodeTuplePtr-valued property holding the value of the
*tailEnv attribute.

ToNodeTuple

is a NodeTuplePtr-valued property holding the value of the *toEnv
attribute.

EdgeLabel

is an integer-valued property holding the value of the *label at-
tribute.

Both the Pascal with statement and the Java anonymous class illustrate the common
case in which there is a single path edge whose tail is at the OutSideInDeps node and whose
tip is in G−W . The *OutSideInEdge role can be used for this special case.

The *OutSideInEdge role must be inherited by a symbol that also inherits the
*OutSideInDeps role. It uses the *Env attribute of the *OutSideInDeps role and the
following two attributes to define the created edge:

*tipEnv is a NodeTuplePtr-valued attribute representing the tip of the created edge.
This attribute must be set by a developer computation.
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*label is an integer-valued attribute that contains the edge label. This synthesized
attribute is set by a module computation to 1.

*OutSideInEdge.*Env specifies the tail of the new edge.
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4 Defining Occurrences

Defining occurrences in a range are used to populate the Bind(n) functions for the scope
graph node(s) n corresponding to that range. In the default case there is only one such node;
to deal with multiple nodes, see Chapter 6 [Isomorphic Scope Graphs], page 27. Only one
computational role, *IdDefScope, is provided by the module for defining occurrences. (For
a situation in which an identifier occurrence is both applied and defining, see Section 5.1
[Worklist search], page 22.)

The *IdDefScope role should be inherited by any defining occurrence (see Chapter 1
[Fundamentals of Name Analysis], page 3). It provides four attributes:

Sym is an integer-valued attribute specifying the identifier. This synthesized at-
tribute is set by a module computation to the value derived from the identifier
(see Chapter 2 [Tree Grammar Preconditions], page 9).

*Env is a NodeTuplePtr-valued attribute representing the range in which the identi-
fier should be bound. This inherited attribute is set by a module computation
to the value of INCLUDING *AnyScope.*Env.

*Key is a DefTableKey-valued attribute representing the entity to which the identifier
has been bound. This attribute is set by a module computation.

A module computation sets the following properties of the value of the *Key

attribute:

Sym is an integer-valued property holding the value of the Sym attribute.

Coord is a CoordPtr-valued property holding the source text coordinate
of the definition (see Section “Source Text Coordinates and Error
Reporting” in The Eli Library).

Env is a NodeTuplePtr-valued property holding the value of the *Env

attribute.

GraphIndex

is an integer-valued property holding the kind derived from the
context of the defining occurrence (see Chapter 6 [Isomorphic Scope
Graphs], page 27).

Other *Key properties can be set by developer computations.

*GotDefKeyProp

is a void attribute representing the state that all properties of the *Key that
are needed during a search have been set.

*GotDefKeyProp should be stated as the postcondition of any developer compu-
tations that set properties of *Key needed by the search process (see Section 7.1
[Information access], page 29). Accumulating computations must be used for
this purpose (see Section “Accumulating Computations” in LIDO – Reference
Manual).





21

5 Applied Occurrences

At every applied occurrence, name analysis computations must search for the defining oc-
currence that denotes the same entity. Recall that the module provides a generic search
algorithm based on the structure of a scope graph (see Section 1.2 [The generic lookup],
page 4). All of the computational roles implementing searches use the following four at-
tributes to provide the information on which that search is based and to record the result:

Sym is an integer-valued attribute specifying the identifier. This synthesized at-
tribute is set by a module computation to the value derived from the identifier
(see Chapter 2 [Tree Grammar Preconditions], page 9).

*UseKey is a DefTableKey-valued attribute characterizing the applied occurrence. This
synthesized attribute is set by a module computation.

A module computation sets the following properties of the value of the *UseKey
attribute:

Sym is an integer-valued property holding the value of the Sym attribute.

Coord is a CoordPtr-valued property holding the source code location (see
Section “Source Text Coordinates and Error Reporting” in The Eli
Library).

Other *UseKey properties can be set by developer computations.

*GotUseKeyProp

is a void attribute representing the state that all properties of the *UseKey

needed during a search have been set.

*GotUseKeyProp should be stated as the postcondition of any developer com-
putations that set properties of *UseKey needed by the search process (see
Section 7.1 [Information access], page 29). Accumulating computations must
be used for this purpose (see Section “Accumulating Computations” in LIDO
– Reference Manual).

*Key is a DefTableKey-valued attribute representing the key of the corresponding
defining occurrence. This attribute is set by a module computation. *Key is a
postcondition of the search.

*Key is set to the value NoKey if the computation has been unable to find
a suitable defining occurrence. *ChkIdUse can be inherited by any applied
occurrence to provide an error report when the value of *Key is NoKey (see
Section 5.3 [Report an unsuccessful search], page 25).

For the properties of the value of the *Key attribute, see Chapter 4 [Defining
Occurrences], page 19.

Suppose that the language allows a programmer to specify relationships between ranges
by using applied occurrences:

1 interface A {

2 class D { ... }

3 }

4 class B extends C.D { ... }
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5 class C implements A { ... }

The inheritance relationship specified on line 4 would be represented in the scope graph by
a path edge with label 1 whose tail is the scope node owned by the class being declared
and whose tip is the scope node found by looking up the applied occurrence D. That path
edge can be added to the scope graph only after the search for D has been completed. But
in order to complete the search for D, the path edge resulting from the declaration on line 5
must have been added to the scope graph before the search for D began. Thus a search for
an edge tip name could fail in two ways: there might be no appropriate defining occurrence,
or some necessary edge might not have been added to the scope graph before the search
began. If the search failed because of missing edges, it must be repeated after edges have
been added. Such repeated searches are costly.

Most of the applied occurrences in a program probably don’t describe the tips of path
edges. Although searches for those symbols could use the same approach as is used for edge
tip names, there is no point in doing so. For performance reasons, it is best to defer searches
that don’t affect the set of edges until the scope graph is complete. Then if a search fails,
we know that there is no appropriate defining occurrence; there is no need to repeat the
search.

There are thus two distinct kinds of searches necessary to find the appropriate defining
occurrence, depending upon the context of the applied occurrence:

Worklist search
If a scope graph is incomplete at the time the computation is initiated, and an
appropriate binding is not found, the lookup will be repeated when that scope
graph has been augmented.

Graph-complete search
If an appropriate binding is not found, the search fails.

5.1 Worklist search

*WL computational roles incorporate a worklist algorithm that iterates operations until all
are complete. This algorithm is expensive, so if a language does not allow a programmer to
specify edge tip names or to copy named bindings then the developer should not use *WL

roles at all.

The items on the worklist are tasks, not values. Each of the *WL roles provides an
attribute that identifies the corresponding task:

*FPItem is an FPItemPtr-valued attribute that represents a worklist computation. This
attribute is set by a module computation.

There are two computational roles that embody worklist actions to search for bindings:

*WLSimpleName

should be inherited by a simple identifier whose binding may be sought before
the scope graph is complete.

*WLQualName

should be inherited by a qualified identifier whose binding may be sought before
the scope graph is complete. Searches for bindings of qualified identifiers do
not explore parent edges of a scope graph.
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The *WLQualName role provides an additional attribute:

*DependsOn

is an FPItemPtr-valued attribute that represents the computation
for the qualifier. This attribute must be set by a developer com-
putation to the value of a *WLSimpleName.*FPItem attribute or a
*WLQualName.*FPItem attribute.

There is one computational role that embodies worklist actions to add a path edge to a
scope graph:

*WLCreateEdge

should be inherited by some convenient symbol in a context where information
about the tip and tail of a named path edge can be determined. It provides
four additional attributes:

*tailEnv is a NodeTuplePtr-valued attribute representing the range that is
the tail of the created edge. This attribute must be set by a devel-
oper computation.

*tipFPItem

is an FPItemPtr-valued attribute that represents the computation
for the tip of the created edge. This attribute must be set by a
developer computation to the value of a *WLSimpleName.*FPItem

attribute or a *WLQualName.*FPItem attribute.

*label is an integer-valued attribute that contains the edge label. This
synthesized attribute is set by a module computation to 1.

*EdgeKey is a DefTableKey-valued attribute representing the key of the cre-
ated edge. This attribute is set by a module computation. EdgeKey
is a postcondition for the worklist computation.

A module computation sets the following properties of the value of
the EdgeKey attribute:

FromNodeTuple

is a NodeTuplePtr-valued property holding the value
of the *tailEnv attribute.

ToNodeTuple

is a NodeTuplePtr-valued property holding the value
of the *toEnv attribute.

EdgeLabel

is an integer-valued property holding the value of the
*label attribute.

Some languages allow bindings from one range to be added to the Bind function of
another range.

*WLInsertDef

should be inherited by a defining occurrence that depends on the result of a
search for the binding of an applied occurrence.
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The *WLInsertDef role uses the following attributes to provide information and
to record the result:

*DependsOn

is an FPItemPtr-valued attribute that represents the computation
yielding the existing binding. This attribute must be set by a de-
veloper computation to the value of a *WLSimpleName.*FPItem at-
tribute or a *WLQualName.*FPItem attribute.

*Scope is a NodeTuplePtr-valued attribute representing the range into
which the existing binding is to be inserted. This inherited attribute
is set by a module computation to INCLUDING *AnyScope.*Env.

Here is an example of WLInsertDef usage. The goal is to import the binding of a type
name defined elsewhere into the range of the enclosing compilation unit. There is a single
identifier occurrence; its role as an applied occurrence is embodied in the symbol ITName,
and its role as a defining occurrence is embodied in the symbol ImportedTypeName. The
two symbols are connected by a chain rule:

TREE SYMBOL ITName INHERITS WLSimpleName END;

TREE SYMBOL ImportedTypeName INHERITS WLInsertDef END;

RULE: ITName ::= Identifier END;

RULE: ImportedTypeName ::= ITName COMPUTE

ImportedTypeName.Sym=ITName.Sym;

ImportedTypeName.DependsOn=ITName.FPItem;

ImportedTypeName.Scope=INCLUDING CompilationUnit.TypeEnv;

END;

There are two ways that *WLInsertDef can fail: there may be no existing binding, or
the range represented by the *Scope attribute may contain a local binding for the given
identifier. In our example, the first case would result in ITName.Key having the value
NoKey (see Chapter 5 [Applied Occurrences], page 21). In the second case, the value of
ImportedTypeName.Key will differ from the the value of ITName.Key.

5.2 Graph-complete search

*GC computational roles assume that all work list tasks have been completed (see Section 5.1
[Worklist search], page 22).

*GCLocalName

should be inherited by an identifier whose binding can be sought only after the
scope graph is complete. Searches for bindings of local names do not explore
any edges of a scope graph.

The *GCLocalName role provides an additional attribute:

*Scope is a NodeTuplePtr-valued attribute representing the range in which
the search for the identifier’s binding should take place. This in-
herited attribute is set by a module computation to the value of
INCLUDING *AnyScope.*Env.
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*GCSimpleName

should be inherited by a simple identifier whose binding can be sought only
after the scope graph is complete.

The *GCSimpleName role provides an additional attribute:

*Scope is a NodeTuplePtr-valued attribute representing the range in which
the search for the identifier’s binding should begin. This inherited
attribute is set by a module computation to the value of INCLUDING
*AnyScope.*Env.

*GCQualName

should be inherited by a qualified identifier whose binding can be sought only
after the scope graph is complete. Searches for bindings of qualified identifiers
do not explore parent edges of a scope graph.

The *GCQualName role provides two additional attributes:

*ScopeKey

is a DefTableKey-valued attribute representing the qualifier. This
inherited attribute is set by a module computation to the value
NoKey.

*Scope is a NodeTuplePtr-valued attribute representing the qualifier.
This inherited attribute is set by a module computation to the
value GetOwnedNodeTuple(THIS.ScopeKey,NoNodeTuple) (see
Section 3.2 [The RangeScope role], page 14).

*GCQualName.*Scope must contain the NodeTuplePtr value of the qualifier. There are
two possibilities:

1. A developer computation sets *GCQualName.*ScopeKey to a DefTableKey value from
which the desired value can be obtained.

2. A developer computation sets *GCQualName.*Scope to the desired value and
*GCQualName.*ScopeKey is ignored.

The developer can change the default computation of *GCQualName.*Scope from
*GCQualName.*ScopeKey by providing an extension function (see Section 7.2 [Obtain a
range from a qualifier], page 30).

5.3 Report an unsuccessful search

If a search for a defining occurrence is unsuccessful, the *Key attribute of the applied
occurrence is set to the value NoKey. The *ChkIdUse computational role is provided by the
module to issue a report in that case.

The *ChkIdUse role may be inherited by any applied occurrence ‘app’. *ChkIdUse

provides two additional attributes:

*SymErr is an integer-valued attribute. This synthesized attribute is set by the module
computation EQ(THIS.*Key, NoKey).

*SymMsg is a VOID-valued attribute. This synthesized attribute is set by the module
computation

IF (THIS.*SymErr,
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message(

ERROR,

CatStrInd("Identifier is not defined: ", THIS.Sym),

0,

COORDREF));

The behavior can be changed for all applied occurrences by symbol computations overrid-
ing the computation of *SymError.*SymErr and/or *SymError.*SymMsg. It can be changed
for individual contexts by rule computations overriding the computation of ‘app’.*SymErr
and/or ‘app’.*SymMsg.
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6 Isomorphic Scope Graphs

Recall that when a language allows a programmer to use the same identifier to represent
entities of different kinds in the same region of the program, the developer is required to use
a distinct scope graph for each kind of identifier (see Section 1.1 [Scope graphs], page 4).
Often a number of these graphs have the same ranges and the same relationships among
those ranges. In that case the distinct scope graphs are isomorphic, and they can all be
implemented by a single instantiation of the ScopeGraphs specification module.

A ScopeGraphs module instantiation always represents a set of isomorphic scope graphs;
by default, that set has a single member. Ranges are represented by values of type
NodeTuplePtr (see Chapter 3 [Establishing the Structure of a Scope Graph], page 13).
These values are pointers to NodeTuple values, which are arrays of pointers to the actual
scope nodes. A set of edges that are equivalent under the isomorphism is specified by giving
NodeTuplePtr values for tail and tip; the module then creates the elements of the set. There
is no additional mechanism needed for a larger set, one need only provide some additional
information about particular identifier occurrences to specify the kind of identifier involved.

Let’s consider a concrete example. A Java programmer may use the identifier ambig

to represent a package, type, variable, and method in a single range. This requires four
distinct scope graphs, one for each entity that ambig can represent. However, the language
rules are such that these four scope graphs are isomorphic. Thus this set of scope graphs
can be implemented by a single instantiation of the ScopeGraphs module. The NodeTuple
corresponding to each range would be a four-element array in that implementation.

The number of elements in the set for a given instantiation of the ScopeGraphs module is
given by the integer-valued *RootScope.*NumberOfIsoGraphs attribute. This synthesized
attribute is set by a module computation to the value 1. A developer must override that
computation when specifying several isomorphic scope graphs.

The *RootScope role is automatically inherited by the symbol at the root of the abstract
syntax. The computation of the *NumberOfIsoGraphs attribute must be overridden by
introducing a computation at that symbol. For example, if Java were the symbol at the
root of the abstract syntax, the computation would be:

TREE SYMBOL Java COMPUTE SYNT.*NumberOfIsoGraphs=4; END;

The elements of the set of scope graphs implemented by a module instantiation are
indexed by values i, 0 ≤ i < ∗NumberOfIsoGraphs. A specification is much more under-
standable if the possible graph indexes are named. Here is an appropriate set of graph index
names for a Java specification:

enum { packageName, typeName, expressionName, methodName,

packageOrTypeName, expressionOrTypeName, ambiguousName

};

The first line names the kinds of entity that have scope graphs (an expressionName is a
field name or a variable name).

Syntactic context must determine the specific kind of identifier at its defining occurrence.
An applied occurrence at which the specific kind of identifier can be determined is called
a strong context. In a weak context, the kind of identifier cannot be determined precisely
although the set of possibilities could be narrowed. For example, in certain Java contexts an
applied occurrence might refer to either a package or a type, but not to a method. Integer
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values j, j ≥ RootScope.NumberOfIsoGraphs are used to specify the kind of identifier in a
weak context. Meanings for these larger values are chosen by the developer, as shown in
the second line of the enumeration.

An identifier occurrence’s kind is specified to a computational role by the integer-valued
GraphIndex attribute. This inherited attribute is set by a module computation to the value
0. The following computational roles provide the GraphIndex attribute:

*IdDefScope

*WLSimpleName

*WLQualName

*WLInsertDef

*GCSimpleName

*GCQualName

When there is more than one graph in the set, the default GraphIndex computations must
be overridden. Here is a specific example:

TREE SYMBOL MethodIdDef INHERITS IdDefScope COMPUTE

INH.GraphIndex = methodName;

END;

A module computation stores the value of the *IdDefScope.*GraphIndex attribute
as the value of the GraphIndex property of the definition table key that is the value of
*IdDefScope.*Key. Similarly, module computations establish values for the GraphIndex

properties of the keys that are the values of the *UseKey attributes of the other roles listed
above.

When the GraphIndex property of an applied occurrence indicates that the context is
weak, searches are carried out in all graphs of the instantiation’s set. If more than one
binding is found, then NoKey is returned. The developer can change this behavior by
providing a language-specific disambiguation function to determine the correct result (see
Chapter 7 [Language], page 29).

Let ‘MaxIndex’ be the maximum value of *RootScope.*NumberOfIsoGraphs over all
instantiations of the ScopeGraphs module in the specification. If ‘MaxIndex’ is greater than
1, then the developer must provide a file named ScopeGraphs.h as part of the specification.
ScopeGraphs.h must contain the following declaration:

#define MaxIsoGraphs ‘MaxIndex’
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7 Implementing Language-Specific Behavior

The ScopeGraphs module is based upon a lookup algorithm that implements concepts
developed over the years to handle visibility of names (see Section 1.2 [The generic lookup],
page 4). While these concepts are present in most languages, they are often embellished
with additional rules and restrictions. It is impossible to build a module that will handle
any but the simplest language "out of the box"; a developer must almost always specialize
it for their application. Our intent is to provide a powerful substrate for the developer, and
to make the critical controls easily available.

We have chosen to define a developer interface consisting of functions called at specific
points in the lookup process. A developer may provide implementations of some, all, or
none of these functions; default versions of those not provided will be used automatically.
The arguments of these functions are definition table keys representing the applied occur-
rence being sought and the candidate binding(s) found by the generic lookup. Some of
the properties of those keys are set by module computations. The developer is free to set
arbitrary properties of keys, so that the functions can have access to whatever information
the developer deems necessary.

Some of the interface functions are called when the generic lookup finds a candidate
binding. Those functions may apply semantic information to accept or reject the candidate
binding. If the binding is to be rejected, then the function can specify whether and in what
manner the search is to continue. Other functions are called to resolve ambiguities when
several bindings have satisfied the search criteria. Finally, initialization and finalization
routines allow for the use of state information that may vary from one lookup to another.

Information about the applied occurrence and the candidate binding is not always suffi-
cient to make a decision. Sometimes the path through a scope graph between applied and
defining occurrences is important, and therefore the module provides functions that the
developer can call to explore the graph.

The name of the file containing the default version of each of the developer-coded func-
tions is given after the interface description. If the default behavior of one of these routines
is inadequate, it is nevertheless a good starting point for implementing a replacement. To
obtain a copy of (say) the source code for LookupBegin as file LookupBegin.c in your
current directory, give the Eli request:

-> $elipkg/Name/LookupBegin.c > LookupBegin.c

After modifying LookupBegin.c, simply add its name to your type-specs file to make it
available.

7.1 Information access

Definition table keys are used as arguments to the interface functions because an arbitrary
set of information can be associated with a definition table key without affecting the in-
terface specification. This gives maximum flexibility without imposing either a physical or
conceptual burden.

An argument representing the applied occurrence being sought is the value of the
*UseKey attribute of that applied occurrence (see Chapter 5 [Applied Occurrences],
page 21). Module computations set the following properties of the *UseKey:
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Sym is an integer-valued property holding the value of the applied occurrence’s Sym
attribute.

Coord is a CoordPtr-valued property holding the source code location of the applied
occurrence.

*GraphIndex

is an integer-valued property holding the value of the applied occurrence’s
GraphIndex attribute (see Chapter 6 [Isomorphic Scope Graphs], page 27).

Other *UseKey properties can be set by developer computations. To ensure that
those property values are actually set before the search begins, an additional attribute,
*GotUseKeyProp, is provided for all applied occurrences (see Chapter 5 [Applied
Occurrences], page 21). *GotUseKeyProp should be stated as the postcondition of any
computations the developer adds to set properties of *UseKey needed by language-specific
functions. Accumulating computations must be used for this purpose (see Section
“Accumulating Computations” in LIDO – Reference Manual). Here is an example that
sets a property called NodeTuple to hold a representation of the range containing the
applied occurrence:

TREE SYMBOL MethodIdUse INHERITS GCSimpleName COMPUTE

SYNT.GotUseKeyProp +=

ResetNodeTuple(THIS.UseKey,INCLUDING AnyScope.Env);

END;

An argument representing a binding candidate is the value of the *Key attribute of the
candidate’s defining occurrence. See Chapter 4 [Defining Occurrences], page 19, for the
properties of that value.

7.2 Obtain a range from a qualifier

The construct ‘q.i’ consists of a qualifier ‘q’ and a qualified identifier ‘i’. Name analysis of
‘q.i’ begins by looking up the qualifier ‘q’. Suppose that this lookup results in the definition
table key ‘k’. In order to look up the qualified identifier ‘i’, an appropriate NodeTuplePtr

value representing a range will be obtained from ‘k’ and the *UseKey of ‘i’ by invoking
AccessNodesFromQualifier. If the developer does not provide that routine, the following
will be used automatically:

NodeTuplePtr

AccessNodesFromQualifier(DefTableKey qualifier, DefTableKey app)

/* On entry-

* qualifier specifies an entity from which a range can be obtained

* app specifies the qualified identifier sought in that range

* On exit-

* AccessNodesFromQualifier represents the range

***/

{ return GetOwnedNodeTuple(qualifier, NoNodeTuple); }

Source code: $elipkg/Name/AccessNodesFromQualifier.c

In the case of the computational role *GCQualName, the developer has additional
options for obtaining a suitable range (see Section 5.2 [Graph-complete search],
page 24). Those options are not available for the computational role *WLQualName, where
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AccessNodesFromQualifier is invoked by the module as soon as the qualifier’s key is
available (see Section 5.1 [Worklist search], page 22).

7.3 Is the binding acceptable?

If the generic algorithm finds a binding for an applied occurrence in Bind(n), it immediately
invokes one of three functions. The result of each function is one of three integer-valued
flags with the names:

AcceptBinding

The generic algorithm should terminate, returning the definition key of the
binding.

IgnoreContinue

The generic algorithm should continue as though no binding had been found.

IgnoreSkipPath

The generic algorithm should continue, but it should not explore paths starting
at node n (see Section 1.2 [The generic lookup], page 4).

The function called depends on the context of the search:

isAcceptableSimple

is invoked in a search for a simple identifier when n is the initial node or a node
reached by following a parent edge.

If the developer does not provide isAcceptableSimple, the following will be
used automatically:

int

isAcceptableSimple (DefTableKey def, DefTableKey app)

/* On entry-

* def is the key of the binding found

* app is the UseKey of the applied occurrence sought

* On exit-

* isAcceptableSimple is the desired continuation

***/

{ return AcceptBinding; }

Source code: $elipkg/Name/isAcceptableSimple.c

isAcceptableQualified

is invoked in a search for a qualified identifier when n is the initial node.

If the developer does not provide isAcceptableQualified, the following will
be used automatically:

int

isAcceptableQualified (DefTableKey def, DefTableKey app)

/* On entry-

* def is the key of the binding found

* app is the UseKey of the applied occurrence sought

* On exit-

* isAcceptableQualified is the desired continuation
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***/

{ return AcceptBinding; }

Source code: $elipkg/Name/isAcceptableQualified.c

isAcceptablePath

is invoked in a search for a simple identifier or a qualified identifier when n is
the tip of a path edge.

If the developer does not provide isAcceptablePath, the following will be used
automatically:

int

isAcceptablePath (DefTableKey def, DefTableKey app, int lab)

/* On entry-

* def is the key of the binding found

* app is the UseKey of the applied occurrence sought

* lab is the label of the path edge

* On exit-

* isAcceptablePath is the desired continuation

***/

{ return AcceptBinding; }

Source code: $elipkg/Name/isAcceptablePath.c

7.4 Deciding among possible bindings

Recall that the generic algorithm traverses all paths starting at node n and made up solely of
edges labeled k (see Section 1.2 [The generic lookup], page 4). When it finds an acceptable
binding, it stops traversing the current path, backs up to node n, and traverses the next
path made up solely of edges labeled k that starts at node n. This means that if there are
several such paths, the search starting at node n may yield several bindings. The result is
of type DefTableKeyList, implemented using the Eli PtrList module (see Section “Linear
Lists of Any Type” in Abstract data types to be used in specifications).

When the complete search yields no bindings, the result is NoKey. If exactly one binding
is found, the result is the key for that binding. If there is more than one binding, the
generic algorithm invokes the function DisambiguatePaths and returns the result of that
invocation.

If the developer does not provide DisambiguatePaths, the following will be used auto-
matically:

DefTableKey

DisambiguatePaths (DefTableKeyList kl, DefTableKey app, int lab)

/* On entry-

* kl is the list of keys from the acceptable bindings

* app is the UseKey of the applied occurrence sought

* lab is the label of the edges making up the paths searched

* On exit-

* DisambiguatePaths is the selected key

***/

{ return NoKey; }



Chapter 7: Implementing Language-Specific Behavior 33

Source code: $elipkg/Name/DisambiguatePaths.c

By returning the value NoKey, this implementation of DisambiguatePaths requires that all
searches yield unambiguous results.

Another possible ambiguity occurs when the applied occurrence is in a weak context (see
Chapter 6 [Isomorphic Scope Graphs], page 27). In that case, searches must be carried out
in more than one scope graph and each search might yield an acceptable binding. When
all searches are complete, the generic algorithm invokes DisambiguateGraphs and returns
the result of that invocation.

If the developer does not provide DisambiguateGraphs, the following will be used auto-
matically:

DefTableKey

DisambiguateGraphs (DefTableKey G[], int N, DefTableKey app)

/* On entry-

* G[] is an array with N elements giving the result for each search

* app is the UseKey of the applied occurrence sought

* On exit-

* DisambiguateGraphs is the selected key

***/

{ int i;

DefTableKey result = NoKey;

for (i = 0; i < N; i++) {

if (G[i] != NoKey) {

if (result != NoKey) return NoKey;

result = G[i];

}

}

return result;

}

Source code: $elipkg/Name/DisambiguateGraphs.c

This implementation requires that exactly one of the graph searches yields an acceptable
binding.

7.5 Initialization and finalization

The developer may sometimes need to initialize and/or finalize data structures that their
functions use during a single lookup. Thus the generic algorithm invokes LookupBegin upon
entry, and invokes LookupComplete as it exits.

If the developer does not provide LookupBegin, the following will be used automatically:

void

LookupBegin (DefTableKey app)

/* On entry-

* app is the UseKey of the applied occurrence sought

***/

{ return; }
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Source code: $elipkg/Name/LookupBegin.c

If the developer does not provide LookupComplete, the following will be used automat-
ically:

DefTableKey

LookupComplete(DefTableKey def, DefTableKey app)

/* On entry-

* def is the key of the binding found

* app is the UseKey of the applied occurrence sought

* On exit-

* LookupComplete is the final result of the lookup

***/

{ return def; }

Source code: $elipkg/Name/LookupComplete.c

7.6 Useful graph operations

The functions described in this section are provided by the ScopeGraphs module. They may
be invoked by developer-coded routines that need to traverse the scope graph in order to
check language-specific name analysis rules. Their interfaces are defined in LangSpecFct.h,
which must be included by any code using them.

The DefTableKey value of the *ScopeKey attribute of a symbol inheriting the
*RangeScope role is used to represent a node in these functions (see Section 3.2 [The
RangeScope role], page 14). That key has a property, NodeTuple, giving the value of
the symbol’s *Env attribute. Representing the node by a definition table key allows the
developer to associate arbitrary language-specific information with a particular range.

Several of these functions require the developer to provide a function that will be
called for each scope graph node visited. That function can determine whether or not
the scope graph node satisfies some language-specific condition. The type of this function
is CallBackDTKFct, defined by:

typedef int (*CallBackDTKFct)(DefTableKey)

The argument of a function of type CallBackDTKFct specifies the graph node to be exam-
ined. If the condition is not satisfied, the function returns 0.

CheckPaths

follows paths in the scope graph that are made up of path edges with a given
label. A developer-coded function is invoked at each node.

int

CheckPaths(DefTableKey f, DefTableKey t, int i,

CallBackDTKFct fnc)

/* On entry-

* f specifies the initial node of the path

* t specifies the final node of the path

* i specifies the label of the edges making up the path

* fnc is a developer-code function invoked at each node

* If no such path exists then on exit-

* CheckPaths=0



Chapter 7: Implementing Language-Specific Behavior 35

* Else if any invocation of fnc yields 0 then

* CheckPaths exits immediately

* CheckPaths=0

* Else on exit-

* CheckPaths=1

***/

isAcceptablePath might invoke CheckPaths to check whether a certain prop-
erty holds for each node on the path between the context of the use of an
identifier and its definition. For example, in Java an inherited name must be
accessible in every class along the inheritance path. In this case, fnc would
be a developer-coded function that verified the accessibility of the identifier,
using information from the node and information stored about the identifier by
isAcceptablePath.

CheckPathsNsp

follows paths in the scope graph that are made up of path edges with a given
label. A developer-coded function is invoked at each node.

CheckPathsNsp is identical to CheckPaths except that f and t are NodeTuple
values instead of definition table keys.

int

CheckPathsNsp (NodeTuplePtr f, NodeTuplePtr t, int i,

CallBackDTKFct fnc)

/* On entry-

* f specifies the initial node of the path

* t specifies the final node of the path

* i specifies the label of the edges making up the path

* fnc is a developer-code function invoked at each node

* If no such path exists then on exit-

* CheckPathsNsp=0

* Else if any invocation of fnc yields 0 then

* CheckPathsNsp exits immediately

* CheckPathsNsp=0

* Else on exit-

* CheckPathsNsp=1

***/

DFSCompleteFrom

does a depth-first scan of the scope graph using path edges with a given label.
A developer-coded function is invoked at each node.

void

DFSCompleteFrom (DefTableKey f, int i, CallBackDTKFct fnc)

/* On entry-

* f specifies the starting node for the search

* i specifies the label of the path edges to be used

* fnc is a developer-code function invoked at each node

* the results returned by fnc calls are ignored

***/
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HidesOnPaths

accesses bindings along a specified path that are hidden by a specified binding
according to the generic lookup (see Section 1.2 [The generic lookup], page 4).

DefTableKey

HidesOnPaths (DefTableKey def, DefTableKey app, int i)

/* On entry-

* def specifies a defining occurrence that may hide other

* bindings

* app specifies an applied occurrence

* i specifies the label of the path edges to be searched

* On exit-

* HidesOnPaths=binding that would be returned

* by the generic lookup when isAcceptablePath(def, app)

* returned IgnoreContinue

***/

HidesNestAndPaths

accesses bindings that are hidden by a specified binding according to the generic
lookup (see Section 1.2 [The generic lookup], page 4).

DefTableKey

HidesNestAndPaths (DefTableKey def, DefTableKey app)

/* On entry-

* def specifies a defining occurrence that may hide other

* bindings

* On exit-

* HidesNestAndPaths=binding that would be returned

* by the generic lookup when isAcceptibleSimple(def, app)

* returned IgnoreContinue

***/

reachableNode

checks for the existence of a path in a (possibly incomplete) scope graph. The
path contains only path edges with a given label, and may or may not also
contain parent edges.

int

reachableNode (DefTableKey f, DefTableKey t, int i, int par)

/* On entry-

* f specifies the initial node of the path

* t specifies the final node of the path

* i specifies the label of the edges making up the path

* if par==0 then the path cannot contain parent edges

* If no such path exists then on exit-

* reachableNode=0

* Else on exit-

* reachableNode=1

***/
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Note that because the scope graph may not be complete when reachableNode

is called, a node that is reported to be unreachable may become reachable later
in the analysis.

GCPathReachable

tests for the existence of a path in a complete scope graph. The path contains
only path edges with a given label.

int

GCPathReachable (NodeTuplePtr f, NodeTuplePtr t, int i)

/* On entry-

* f specifies the initial node of the path

* t specifies the final node of the path

* i specifies the label of the edges making up the path

* If f != t and such path exists then on exit-

* GCPathReachable=1

* Else on exit-

* GCPathReachable=0

***/

The scope graphs are assumed to be complete. The function does not walk the
graph, but it uses bitsets to decide reachability.
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8 Pre-defined Identifiers

Most programming languages use natural-language representations for some basic entities.
For example, the two Boolean values are often represented as true and false. There are
two mechanisms for introducing such representations into a programming language:

Keyword A unique basic symbol of the language. Keywords have neither defining nor
applied occurrences, and their meanings never change.

Pre-defined identifier
A normal identifier, subject to the normal scope rules for identifiers, with a pre-
definition in a particular range. Pre-defined identifiers have applied occurrences,
but there is no defining occurrence for the pre-definition. They can be re-defined
by defining occurrences in other ranges.

Pre-definitions are established by the SGPreDefId module, instantiated in a ‘specs’ file
with or without an instance argument:

$/Name/SGPreDefId.gnrc +instance=NAME +referto=(FILENAME) :inst

$/Name/SGPreDefId.gnrc +referto=(FILENAME) :inst

The instance parameter must have the same value as that of the ScopeGraphs module
for which the pre-definition is intended. The referto parameter gives the name of the file
containing the descriptions of the pre-definitions.

If the SGPreDefId module is instantiated, then the MakeName module must be instan-
tiated to encode identifiers (see Section “Generating Optional Identifiers” in Solutions of
Common Problems). For example, if Ident is the basic symbol denoting an identifier, then
the MakeName module instantiation would be:

$/Tech/MakeName.gnrc +instance=Ident:inst.

A set of pre-definitions is enumerated in the file whose name is the referto argument of
the SGPreDefId instantiation. Each pre-definition is specified by a macro call. The macro
call may have some or all of the following arguments:

_str is the literal string being pre-defined.

_sym is the name of an integer-valued variable that will be set to the unique inte-
ger value derived from the _str argument by the MakeName module. If this
argument is omitted, no variable is set.

_key is the name of the DefTableKey-valued known key representing the entity bound
to the _str argument by this pre-definition (see Section “How to specify the
initial state” in Definition Table). If this argument is omitted, no entity is
associated with the identifier.

_env is a NodeTuplePtr value specifying the range in which the pre-definition oc-
curs. If this argument is omitted, the *Env attribute of the root symbol of the
grammar is assumed.

_ndx is an integer value specifying the graph index of the pre-definition (see Chapter 6
[Isomorphic Scope Graphs], page 27). If this argument is omitted, 0 is assumed.
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The string argument need not obey the rules specified for the notation of identifier symbols.
(Thus artifacts can be defined that cannot be referred to by a name in a program.) There
is no need to separately declare variables or known keys. The appearance of the variable
name or known key name as a macro argument ensures that it is declared.

Variable names and known key names are available for use in LIDO specifications; known
key names may also be used in any other specification that has access to the definition table
(see Definition Table).

The pre-definition file must contain a sequence of macro calls, with each macro call
establishing a single pre-definition. The sequence should not contain any other code or
text. Different pre-definitions may require different sets of arguments, and unfortunately
the macro facility used requires each macro name to be associated with a specific set of
arguments. Thus we have nine macros, all of which do the same thing. Choose the macro
that fits the set of arguments you need to describe the specific pre-definition:

PreDefSymKeyEnvNdx(_str,_sym,_key,_env,_ndx)

PreDefSymKeyEnv(_str,_sym,_key,_env)

PreDefSymKeyNdx(_str,_sym,_key,_ndx)

PreDefSymKey(_str,_sym,_key)

PreDefSym(_str,_sym)

PreDefKeyEnvNdx(_str,_key,_env,_ndx)

PreDefKeyEnv(_str,_key,_env)

PreDefKeyNdx(_str,_key,_ndx)

PreDefKey(_str,_key)

In some cases, it may be necessary to pre-define ranges (for example, the range owned
by the pre-defined Object class in Java) Therefore the module also provides macro calls for
this purpose. Each call may have some or all of the following arguments:

_key is the name of a DefTableKey-valued known key allowing the developer to
associate a pre-defined entity with this range (see Section 3.2 [The RangeScope
role], page 14). It may have the value NoKey, indicating no association.

_range is the name of a NodeTuplePtr-valued variable that is set by this pre-definition
and will be used as the _env argument for subsequent macro calls.

_env is a NodeTuplePtr value specifying the parent of the pre-defined range (see
Section 3.2 [The RangeScope role], page 14). If this argument is omitted, the
root symbol of the grammar is assumed.

Again we have the issue of different argument patterns needing different macro names:

PreDefNodeEnv(_key,_range,_env)

PreDefNode(_key,_range)

Pre-definitions are established before name analysis begins.
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9 Name Analysis Testing

The name analysis testing module is instantiated by

$/Name/SGProof.gnrc +instance=NAME +referto=IDENT :inst

The instance parameter must have the same value as that of the instantiation of the Scope-
Graphs module under test, and the referto parameter must give the name of the grammar
symbol for identifiers. Several instantiations may be used together in order to simultane-
ously test the bindings in a collection of instantiations of the ScopeGraphs module.

Without further specification, this module augments the ScopeGraphs module so that
the generated processor produces messages of the form:

"file1", line 2:22 NOTE: i ("file2", line 3:7)

One message is written to the standard error file for each applied occurrence i (see Chapter 5
[Applied occurrences], page 21). The first coordinate specifies the location of the applied
occurrence, the second specifies the location of the corresponding defining occurrence. No
message is output for unbound identifier occurrences.

The SGProof module provides one computational role, *ProofAppliedOcc, that is au-
tomatically inherited by any symbol inheriting any of the applied occurrence roles (see
Chapter 5 [Applied Occurrences], page 21). It provides five attributes:

Sym is an integer-valued attribute specifying the identifier. This attribute is
usually set by a computation associated with the symbol that inherits
*ProofAppliedOcc.

*Key is a DefTableKey-valued attribute representing the key of the corresponding
defining occurrence. This attribute is usually set by a computation associated
with the symbol that inherits *ProofAppliedOcc.

*NoteKey is a DefTableKey-valued attribute representing the defining occurrence whose
coordinates are to be printed in the note. This synthesized attribute is set to
the value of the *Key attribute by a module computation.

*msg is a VOID attribute that is the post-condition for the computation printing the
note.

*doProof is an integer-valued attribute that controls the output of the note. This at-
tribute is set to 1 (print the note) by a module computation.

If the *Key attribute of the symbol inheriting *ProofAppliedOcc does not represent the
defining occurrence corresponding to this applied occurrence, use a developer computation
to set the *NoteKey attribute to the correct key value.

The computation whose postcondition is the *msg attribute is carried out if the value of
the *doProof attribute is 1, and is ignored if the value of the *doProof attribute is 0.

Override the computation of *msg to modify the output format or change the precondi-
tion for printing the note.

Any symbol can inherit the ProofAppliedOcc role, provided that the developer ensures
that the Sym and *Key attributes have appropriate values. If the values are irrelevant for
the particular symbol, set the Sym attribute to NoIdn and the *Key attribute to NoKey.
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10 Application Program Interface

Computational roles are implemented by calls of functions that operate on the ScopeGraphs
module’s state. For certain language-specific features of name analysis it may be necessary
or convenient for a developer to call those functions directly in a context that cannot play
the corresponding role. For example, the package structure in Java requires the developer
to create nodes that don’t correspond to subtrees of the abstract syntax tree. The solution
is to formulate a computation in a context where the information is available, even though
that context does not fit the requirements of any appropriate role.

The functions described in this chapter can be invoked within any .lido file without fur-
ther specification. Any other file invoking them must make the include file ModelExport.h
available in the context of the invocation.

Invocations of the functions described here usually depend on values yielded by other
computations, and/or on the effects that other computations have on the state of a Scope-
Graphs module instantiation. Value dependence is explicit in the data flow: if a value is
passed as an argument to a function call, then that value must be computed before the
function is called. State dependence must be made explicit through the use of void at-
tributes (see Section “State Dependencies” in LIDO – Computations in Trees). Eli uses
explicit dependence information to statically schedule all computations. That schedule is
independent of any particular program.

The ScopeGraphs module’s roles make all of the necessary dependence relations explicit.
If additional computations are necessary, then the developer must establish explicit depen-
dence relations to define the effect of those additional computations on the state of the
instantiation. Thus the developer must have an understanding of the internal state of the
module instantiation in order to select the appropriate pre- and post-conditions for function
invocations.

10.1 The state of an instantiation

All of the elements of the ScopeGraphs module’s data structure are represented by pointers.
In the documentation we will refer to pointers to elements as though they were the elements
themselves.

GraphsDescrPtr

represents an instantiation of the ScopeGraphs module. Each instantiation of
the ScopeGraphs module results in a single value of type GraphsDescrPtr,
which is available as the value of the attribute *RootScope.*GraphsDescr.

NodeTuplePtr

represents a range. NodeTuplePtr has a distinguished value, NoNodeTuple, that
represents no range. A NodeTuple is an array of scope graph nodes that are
equivalent under the isomorphism defined by the ScopeGraphs module instan-
tiation (see Section 1.1 [Scope graphs], page 4).

ScopeNodePtr

represents a scope graph node. ScopeNodePtr has a distinguished value,
NoScopeNode, that represents no scope graph node.
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FPItemPtr

represents a worklist task (see Section 5.1 [Worklist search], page 22).

As an example, consider the ScopeGraphs module instantiated by:

$/Name/ScopeGraphs.gnrc +instance=A_ :inst

Assume that MaxIsoGraph is set to 4, and that the attribute A_RootScope.A_

NumberOfIsoGraphs has the value 2 (see Chapter 6 [Isomorphic Scope Graphs],
page 27).

In this case, NodeTuplePtr values point to arrays of four ScopeNodePtr values. Instance
A_ uses only the array elements with graph index 0 or 1, however, since A_RootScope.A_

NumberOfIsoGraphs=2. The GraphsDescrPtr value that represents the instantiation can
be found at A_RootScope.A_GraphsDescr.

We have seen that the scope graph nodes, the parent edges of the graph, and some of
the path edges can be established based on information that exists in the abstract syntax
tree prior to name analysis (see Chapter 3 [Establishing the Structure of a Scope Graph],
page 13). Similarly, the properties of almost all defining occurrences can be determined
without reference to name analysis results (see Chapter 4 [Defining Occurrences], page 19).

The tip of a path edge that is identified by a name in the program cannot be located
without a name analysis computation: the name must be resolved in order to create the
edge. That resolution may depend on the creation of other path edges (see Chapter 5
[Applied Occurrences], page 21). The ordering of edge tip resolution operations is program-
dependent, and therefore those operations cannot be scheduled statically.

Eli requires static scheduling of attribute computations. Therefore all of the *WL roles’
computations create appropriate tasks and add them to a worklist rather than actually
carrying them out (see Section 5.1 [Worklist search], page 22). Dependences among the
tasks are represented by links between the worklist entries. Since none of the tasks is being
executed, the program-specific dependences mentioned above do not affect the order of
execution of the computations that create worklist tasks.

Once all tasks have been added to the worklist, they can be carried out by an indivisible
operation called FPSolveItems. FPSolveItems scans through the worklist, completing each
task that depends only on completed tasks, and iterates until all tasks have been completed.
Although FPSolveItems could require n scans through a worklist of length n, in practice it
seldom requires more than a single scan. The reasons seem to be that programmers don’t
use inherited names for edge tips, and that the ScopeGraphs module is careful to avoid
out-of-order dependence by putting the individual tasks required to resolve a qualified edge
tip name onto the worklist in execution order.

In some languages, names identifying path edge tips may be type-qualified (see
Section 1.3 [Interaction with type analysis], page 5). Type-qualified tip names require
that the abstract syntax tree be partitioned into subtrees, with the root of each subtree
inheriting the OutSideInDeps role (see Section 3.5 [The OutSideInDeps role], page 17).
OutSideInDeps is automatically inherited by the root symbol, so every tree node has an
OutSideInDeps ancestor even if the language has no type-qualified tip names.

Let N be the set of tree nodes whose symbols inherit OutSideInDeps, and let Tn be the
subtree rooted at node n ∈ N . Finally, let tn be Tn − {Tk|k ∈ N is a descendent of n}.
Tasks must be added to the worklist, and FPSolveItems executed, independently for each
tn. The subtrees must be processed in outside-in order.
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FPSolveItems cannot be executed in tn until the instantiation’s state satisfies three
conditions:

• All of the ranges in tn have been established (see Section 3.2 [The RangeScope role],
page 14).

• All of the defining occurrences in tn have been processed (see Chapter 4 [Defining
Occurrences], page 19).

• All of the bound edges in tn have been established (see Section 3.4 [The BoundEdge
role], page 16).

• All of the tasks in tn have been added to the worklist (see Section 5.1 [Worklist search],
page 22).

This dependence is made explicit through the use of the abstract role PreWork, provided
by the ScopeGraphs module.

PreWork is inherited by every role that establishes a range, processes a defining oc-
currence, establishes a bound edge, or creates a worklist task. The accumulating attribute
*PreWork.*PreWorkDone represents the post-condition of the computation in each case (see
Section “Accumulating Computations” in LIDO - Reference Manual). If a developer creates
a computation that processes a defining occurrence, establishes a bound edge, or creates a
worklist task, then the developer must arrange for that computation to have an attribute
*PreWork.*PreWorkDone as a post-condition. Then the pre-condition for FPSolveItems in
tn is *OutSideInDeps.*PreWorkDone:

CLASS SYMBOL *OutSideInDeps COMPUTE

SYNT.*PreWorkDone =

CONSTITUENTS *PreWork.*PreWorkDone SHIELD *OutSideInDeps;

END;

*OutSideInDeps.*FPSolved is the void attribute that characterizes the state in which
FPSolveItems has completed execution. In order to ensure that the subtrees are processed
in outside-in order, any operation that adds a task to the worklist must have the following
as a precondition:

INCLUDING *OutSideInDeps.*FPSolved

When FPSolveItems has completed execution, the scope graph is complete for the cur-
rent tn. Computations associated with the *GC roles can then be executed (see Section 5.2
[Graph-complete search], page 24). It may be necessary to intersperse type analysis compu-
tations to bind type names in declarations (see Section 1.3 [Interaction with type analysis],
page 5).

10.2 Functions that create nodes, edges, and bindings

The functions described in this section do not depend on the state of the ScopeGraphs
module. They can be called in any context where their arguments are available.

NodeTuplePtr

newNodeTuple (GraphsDescrPtr d, NodeTuplePtr p, int l)

/* Create a representation of a range in a scope graph

* On entry-

* d specifies the module instantiation
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* p represents a range

* l is the current line number in the input text

* On exit-

* newNodeTuple points to a new range in d

* if p != NoNodeTuple then

* d has a parent edge with tail newNodeTuple and tip p

* else

* d has no parent edge with tail newNodeTuple

***/

The third argument is generally set to 0 when newNodeTuple is called by developer code,
since that code is generally not associated with a particular line in the source text.

Any developer invocation of newNodeTuple must guarantee that the *PreWorkDone at-
tribute of some node inheriting *PreWork is assigned after the function returns.

NodeTuplePtr

ParentOfNodeTuple (NodeTuplePtr r)

/* On entry-

* r represents a range

* If r is the tail of a parent edge then on exit-

* ParentOfNodeTuple represents the tip of r’s parent edge

* Else on exit-

* ParentOfNodeTuple=NoNodeTuple

***/

ScopeNodePtr

SelectNode (NodeTuplePtr r, int index)

/* On entry-

* r represents a range

* index is a valid graph index for r

* On exit-

* SelectNode points to the scope node of r that is indexed by index

void

NodeTupleOwnerKey (NodeTuplePtr r, DefTableKey owner)

/* On entry-

* r represents a range

* owner specifies an entity

* On exit-

* owner owns the range r

***/

Any developer invocation of NodeTupleOwnerKeymust guarantee that the *PreWorkDone
attribute of some node inheriting *PreWork is assigned after the function returns.

DefTableKey

OwnerKeyOfNodeTuple (NodeTuplePtr r)

/* On entry-

* r represents a range

* If an entity owns r then on exit-

* OwnerKeyOfNodeTuple specifies the entity that owns r
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* Else on exit-

* OwnerKeyOfNodeTuple=NoKey

***/

The developer must ensure that the owner key is set before being accessed.

DefTableKey

OwnerKeyOfOneNode (ScopeNodePtr n)

/* On entry-

* n represents a scope graph node

* If n has an owner then on exit-

* OwnerKeyOfOneNode is the key of the owner

* Else on exit-

* OwnerKeyOfOneNode=NoKey

***/

The developer must ensure that the owner key is set before being accessed.

DefTableKey

NABindIdn (NodeTuplePtr r, int i, int id, DefTableKey k, CoordPtr c)

/* Bind an identifier in a scope

* On entry-

* r[i] defines the desired scope graph node

* id defines the identifier

* k represents an existing binding or is NoKey

* c specifies the source coordinates or is NoPosition

* if Bind(r[i])(id) is undefined then

* if k==NoKey then Bind(r[i])(id)=NewKey()

* else Bind(r[i])(id)=k

* else if Bind(r[i])(id)==NoKey and k!=NoKey then-

* Bind(r[i])(id)=k

* On exit-

* NABindIdn returns Bind(r[i])(id)

***/

Any developer invocation of NABindIdnmust guarantee that the *PreWorkDone attribute
of some node inheriting *PreWork is assigned after the function returns.

DefTableKey

addEdge (NodeTuplePtr tail, NodeTuplePtr tip, int l)

/* Add path edges

* On entry-

* tail represents a range

* tip represents a range

* label is a valid path edge label

* On exit-

* k=NewKey()

* A path edge has been added from tail[i] to node tip[i]

* for each valid scope graph index i

* Each added path edge has label l and key k

* addEdge returns k
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***/

Any developer invocation of addEdge must guarantee that the *PreWorkDone attribute
of some node inheriting *PreWork is assigned after the function returns.

10.3 Functions that initiate worklist operations

The functions described in this section initiate worklist operations. No function in this sec-
tion may be invoked in a particular context unless that invocation depends on the following
attribute in that context:

INCLUDING *OutSideInDeps.*FPSolved

Any invocation of a function described in this section must guarantee that the
*PreWorkDone attribute of some node inheriting *PreWork is assigned after the function
returns.

Note: Do not use worklist operations for lookup of names if the lookup could be delayed
until the graph is complete.

FPItemPtr

FPLookupPlain (NodeTuplePtr r, int i, DefTableKey u, GraphsDescrPtr d)

/* Establish a task to look up a simple identifier

* On entry-

* r represents a range

* i is a valid graph index

* u is the user key of the applied occurrence

* d specifies the module instantiation

* On exit-

* A task to seek applied occurrence u, starting at node r[i],

* has been added to the worklist

* FPLookupPlain returns a representation of the task

***/

FPItemPtr

FPLookupQual (FPItemPtr q, int i, DefTableKey u, GraphsDescrPtr d)

/* Establish a task to look up a qualified identifier

* On entry-

* q represents a task to find the qualifier

* i is a valid graph index

* u is the user key of the applied occurrence

* d specifies the module instantiation

* On exit-

* A task to seek applied occurrence u, starting at node q[i],

* has been added to the worklist

* FPLookupQual returns a representation of the task

***/

FPItemPtr

FPInsertDef (NodeTuplePtr r, int i, DefTableKey u, FPItemPtr def, GraphsDescrPtr d)

/* Establish a task to import a binding

* On entry-

* r represents a range
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* i is a valid graph index

* u is the user key of an applied occurrence

* def describes a task yielding the binding to be imported

* d specifies the module instantiation

* if Bind(r[i])(u) is undefined then Bind(r[i])(u)=NoKey

* On exit-

* A task to set Bind(r[i])(u) to the result of def

* has been added to the worklist

* FPInsertDef returns a representation of the task

***/

If the applied occurrence is not already bound in the importing scope, FPInsertDef creates
a temporary binding there that may be replaced later (see Section 10.2 [Creating Nodes],
page 45).

FPItemPtr

FPAddEdge (NodeTuplePtr f, FPItemPtr t, int l, GraphsDescrPtr d, CoordPtr p)

/* Establish a set of equivalent edges

* On entry-

* f represents a range

* t represents a range

* l is a valid path edge label

* d specifies the module instantiation

* p specifies the source coordinates or is NoPosition

* On exit-

* A task to create a path edge from f[i] to t[i],

* for each valid scope graph index i,

* has been added to the worklist

* FPAddEdge returns a representation of the task

***/

10.4 Functions that search complete graphs

The functions described in this section assume that the worklist operations are complete.
No function in this section may be invoked in a particular context unless that invocation
depends on the following attribute in that context:

INCLUDING *OutSideInDeps.*FPSolved

int

getFPItemDone (FPItemPtr t)

/* On entry-

* t represents a task

* If t has been completed then on exit-

* getFPItemDone returns 1

* Else on exit-

* getFPItemDone returns 0

***/

DefTableKey

getFPItemKey (FPItemPtr t)
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/* On entry-

* t represents a completed lookup task

* On exit-

* getFPItemKey returns the key found by the task

***/

DefTableKey

getFPEdgeKey (FPItemPtr t, int l)

/* On entry-

* t represents a completed FPAddEdge task

* On exit-

* getFPEdgeKey returns the edge key found by the task

***/

In the following functions, the argument u is a unique key whose properties characterize
an applied occurrence. At least the properties Sym, GraphIndex, and Coord must be set
to suitable values prior to invoking the function. Further properties may be set to support
functions implementing the developer interface (see Chapter 7 [Implementing Language-
Specific Behavior], page 29).

DefTableKey

GCLookupPlainId (NodeTuplePtr r, int i, DefTableKey u)

/* Look up a simple identifier

* On entry-

* r represents a range

* i is a valid graph index

* u is the user key of the applied occurrence

* On exit-

* GCLookupPlainId returns the key found for u starting at r[i]

***/

DefTableKey

GCLookupQualId (NodeTuplePtr r, int i, DefTableKey u)

/* Look up a qualified identifier

* On entry-

* r represents a range

* i is a valid graph index

* u is the user key of the applied occurrence

* On exit-

* GCLookupQualId returns the key found for u starting at r[i]

***/

Here the range r is obtained from the qualifier, and the search does not follow parent edges
(see Section 1.2 [The generic lookup], page 4).

DefTableKey

GCLookupLocalId (NodeTuplePtr r, int i, DefTableKey u)

/* Look up an identifier

* On entry-

* r represents a range

* i is a valid graph index
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* u is the user key of the applied occurrence

* On exit-

* GCLookupLocalId returns the key found for u starting at r[i]

***/

This search seeks only a binding Bind(r[i])(id), where id is the identifier of the applied
occurrence.

10.5 Functions that pre-define symbols

The SGPreDefId module provides the following functions, used to implement the pre-
definition macros (see Chapter 8 [Pre-defined Identifiers], page 39). They may be called in
any .lido file, and in any other context that includes the header file SGPreDefMod.h.

void

SGPreDefineSym(const char *name, int *sym)

/* Pre-code an identifier

* On entry-

* name is the external representation of the identifier

* sym addresses an integer-valued variable

* On exit-

* The variable sym contains the internal representation of name

***/

void

SGPreDefine (const char *name, int *sym,

NodeTuplePtr env, int index, DefTableKey k)

/* Pre-define an identifier

* On entry-

* name is the external representation of the identifier

* sym addresses an integer-valued variable

* env specifies the range in which to define the identifier

* index specifies the graph in which to define the identifier

* k is the known key bound to the identifier

* On exit-

* The variable sym contains the internal representation of name

* The binding has been created

***/

Any developer invocation of SGPreDefine must guarantee that the *PreWorkDone at-
tribute of some node inheriting *PreWork is assigned after the function returns.

void

SGPreDefineNode (GraphsDescrPtr descr, const char *name, int *sym,

DefTableKey key, NodeTuplePtr *node, NodeTuplePtr parent)

/* Pre-define a range

* On entry-

* descr is the metadata for the ScopeGraphs module instantiation

* being initialized

* name is the external representation of the pre-defined range’s owner

* key is the known key for the pre-defined range’s owner
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* node addresses a NodeTuplePtr-valued variable

* parent is tip of the pre-defined range’s parent edge

* On exit-

* The variable sym contains the internal representation of name

* the variable node contains a pointer to the pre-defined range

***/

Any developer invocation of SGPreDefineNode must guarantee that the *PreWorkDone

attribute of some node inheriting *PreWork is assigned after the function returns.
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